In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented...In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.展开更多
In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the...In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.展开更多
The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This...The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.展开更多
文摘In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.
基金State Natural Science Foundation of China (40074008) and State Key Basic Research Development and Program-ming Project (G1998040702).
文摘In this article, we analyze the dynamic characteristics of head wave in multi-layered half-space media models with high-velocity layer or low-velocity layer, and the model with a continuous transition-zone between the crust and the mantle by using synthetic seismogram. It is concluded that the dynamic characteristics of head wave are sensitive to the thickness and velocity of the high-velocity layer. There is obvious diffraction phenomenon of seismic wave if the thickness of high-velocity layer is very small compared with the characteristic wavelength. In this case, the high-velocity layer cannot shield the head wave propagating along the upper interface of the media below it, and the amplitude of this head wave is proportional to the thickness or the velocity of the high-velocity layer. When the thickness of high-velocity layer is nearly identical to the characteristic wavelength of seismic wave, the wave phases reflected from the bottom of the high-velocity layer and the head wave phase may have very close arrival and weaken each other because of destructive interference. As to low-velocity layer, the amplitude of the head wave is weak and decreases with the velocity of this layer. It is also found that if a continuous transition-zone between the crust and the mantle is introduced, we can get a strong apparent head wave phase in synthetic seismogram and the amplitude of this phase increases with the thickness or velocity gradient of the transition-zone.
基金supported by National Natural Science Foundation of China(No.41204094)Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0506)
文摘The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.