期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
NUMERICAL SIMULATION OF FLOW OF HIGHLY VISCOELASTIC FLOW IN THREE-DIMENSIONAL VARYING THICK SLIT CHANNEL
1
作者 杨伯源 李勇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第3期247-255,共9页
The distributive law of flow rate is studiedfor highly viscoelastic flow in threedimensional slit channel with varying thickness by using Finite Block Element Method(FBM).As an example.the influence of restrictive blo... The distributive law of flow rate is studiedfor highly viscoelastic flow in threedimensional slit channel with varying thickness by using Finite Block Element Method(FBM).As an example.the influence of restrictive block on.flow rate is obtained in fish channel of the plate extruding die and the results of numerical simulation are in concordance withthe approximatical analytical solution.It is proved that FBM can be considered as an important toolfor CAD/CAM. 展开更多
关键词 highly viscoelastic flow lubricating approximation varying thick slit channel numerical simulation
下载PDF
Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM
2
作者 T. Chourushi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第1期41-51,共11页
Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though loo... Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS) is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS) were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all I-IRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E ~ 5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E. 展开更多
关键词 high resolution schemes (HRS)Viscoelastic fluid Contraction flows Elasticity number OpenFOAM
下载PDF
Insight on Viscoelasticiy of Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 High Entropy Bulk Metallic Glass
3
作者 Ji-chao QIAO Jean-marc PELLETIER +1 位作者 Ning LI Yao YAO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第1期19-23,共5页
High entropy bulk metallic glasses show promising mechanical and physical properties.Dynamic mechanical properties of Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass ... High entropy bulk metallic glasses show promising mechanical and physical properties.Dynamic mechanical properties of Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass were investigated by mechanical spectroscopy(or called dynamic mechanical analysis).The main(α)relaxation was observed in the framework of the loss modulus G″,which is related to the dynamic glass transition behaviour for the glassy materials.From physical model point of view,dynamic mechanical properties of the Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass show good agreement compared with the quasi-point defects theory. 展开更多
关键词 high entropy bulk metallic glass viscoelasticity mechanical spectroscopy quasi-point defect theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部