Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present st...Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.Methods:A total of 3053 healthy Han Chinese adults(1922 women)aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022.The real-time tracking of common carotid artery walls was achieved by the radio frequency(RF)ultrasound system.The IMT,diameter,compliance coefficient,βstiffness,local pulse wave velocity(PWV),local systolic blood pressure,augmented pressure(AP),and augmentation index(AIx)were then automatically measured and reported.Data were stratified by age groups and sex.The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions.The major clinical determinants of carotid properties were identified by Pearson’s correlation,multiple linear regression,and analyses of covariance.Results:All the parameters of carotid properties demonstrated significantly age-related trajectories.Women showed thinner IMT,smaller carotid diameter,larger AP,and AIx than men.Theβstiffness and PWV were significantly higher in men than women before forties,but the differences reversed after that.The increase rate of carotid IMT(5.5µm/year in women and 5.8µm/year in men)and diameter(0.03 mm/year in both men and women)were similar between men and women.For the stiffness and wave reflections,women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes(all P for age by sex interaction<0.05).The blood pressures,body mass index(BMI),and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex.Conclusions:The age-and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established.The blood pressures,BMI,and triglyceride levels should be considered for clinical application of corresponding reference values.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ...Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.展开更多
Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results....Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.展开更多
Pancreatic malignancy is still the most lethal gastrointestinal malignancy.It has a very poor prognosis with low survival rate.Surgery is still the main treatment option for pancreatic malignancy.Most patients already...Pancreatic malignancy is still the most lethal gastrointestinal malignancy.It has a very poor prognosis with low survival rate.Surgery is still the main treatment option for pancreatic malignancy.Most patients already have locally advanced and even late stage disease due to non-specific abdominal symptoms.Even though some cases are still suitable for surgical treatment,due to its aggressiveness adjuvant chemotherapy is becoming the standard treatment for controlling the disease.Radiofrequency ablation(RFA)is a thermal therapy that has been used as one of the standard treatments for liver malignancy.It can also be performed intraoperatively.There are several reports on percutaneous RFA treatment for pancreatic malignancy using transabdominal ultrasound and guided by computed tomography scan.However,due to its anatomical location and the risk of high radiation exposure,these methods seem to be very limited.Endoscopic ultrasound(EUS)has been widely used for pancreatic abnormality evaluation due to its ability to detect more accurately,especially small pancreatic lesions,compared to other imaging modalities.By the EUS approach,it is easier to achieve good visualization of tumor ablation and necrosis as the echoendoscope position is closer to the tumor area.Based on studies and a recent meta-analysis,EUS-guided RFA is a promising treatment approach for most pancreatic malignancy cases,but most studies only collected data from a small sample size.Larger studies are needed before clinical recommendations can be made.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
This study evaluated the effects of early treatment with β-adrenergic blocker metoprolol on ventricular remodeling and function after acute myocardial infarction (AMI) by using high frequency ultrasound.The relations...This study evaluated the effects of early treatment with β-adrenergic blocker metoprolol on ventricular remodeling and function after acute myocardial infarction (AMI) by using high frequency ultrasound.The relationship between the efficacy and the expression level of cardiac myocardial inflammatory cytokine was examined in rats.The rat model of AMI was induced by ligating the left ante-rior descending artery.The surviving rats were randomly assigned to two experimental groups:MI control (MI) group and MI metoprolol (MI-B) group,with the rats undergoing sham operation serving as normal control (Sham).MI-B group was given metoprolol for 4 weeks (refer to the CCS-2 protocol) and the other two groups received equal volume of saline via intragastric (i.g.) administation.The ventricular remodeling and function were evaluated by high frequency ultrasound 4 weeks after the treatment.Then all rats were sacrificed for pathological examination and immunohistochemistrical detection of inflammatory cytokines,including IL-1β,IL-6,IL-10 and TNF-α.Compared with the MI group,the left ventricular end-systolic dimension,end-diastolic dimension,end-systolic volume and end-diastolic volume of the MI-B group were significantly decreased (P<0.01),while the left ventricular anterior wall end-diastolic thickness,ejection fraction and fractional shortening were obviously increased (P<0.01).The conspicuous improvement in the left ventricular morphology and function was coincident with the markedly reduced TNF-α and IL-1β expression and the increased IL-10 expression.We are led to conclude that early metoprolol treatment for AMI can regulate myocardial inflammatory cytokine expression to improve cardiac function and the underlying mechanism might be that it decreases the level of pro-inflammatory cytokines and increases the level of its anti-inflammatory counterparts in cardiac myocytes.Our study also showed that echocardiography is a useful technique for the structural and functional assessment of left ventricle after acute myocardial infarction.展开更多
Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitt...Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitted to the Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine from December 2017 to July 2018 were selected. They were all undergoing transperineal 3D volume ultrasound combined with 2D high-frequency ultrasound examination, and the diagnosis results were analyzed. The results of ultrasonography and surgical pathology were compared. Results: Among 52 patients, 3D volume ultrasound combined with 2D high-frequency ultrasound were used to diagnose 32 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 5 cases of supra-sphincter type, and 1 case of extra-sphincter type. T supervisor classification accuracy rate is 90%. The detection rate of branch pipes was 92%, and the compliance rate of internal fistula was 95%. Two-dimensional high-frequency ultrasound was used to diagnose 34 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 4 cases of supra-sphincter type, and 0 cases of extra-sphincter type. The detection rate of branch canals was 42%, and the accuracy of type classification was 90%. The coincidence rate was 95%. There was a statistically significant difference in the detection rate of the anal fistula branch and the coincidence rate of the internal fistula between the two methods (both P Conclusion: 1) The overall coincidence rate of three-dimensional volumetric ultrasound combined with two-dimensional high-frequency ultrasound in the diagnosis of anal fistula is high;2) Three-dimensional volumetric ultrasound technology has great application prospects in infants and anal fistulas.展开更多
<strong>Objective:</strong> To explore the application value of high-frequency ultrasound and contrast-enhanced ultrasound in different syndrome types of knee osteoarthritis, and to provide more imaging ev...<strong>Objective:</strong> To explore the application value of high-frequency ultrasound and contrast-enhanced ultrasound in different syndrome types of knee osteoarthritis, and to provide more imaging evidence for clinical diagnosis and treatment. <strong>Method:</strong> Sixty patients with KOA were selected according to TCM classification, which were mainly divided into Qi stagnation and blood stasis type and cold-dampness blockage type. All knee joints were routinely examined by high frequency ultrasound, and those with synovial hyperplasia were examined by contrast-enhanced ultrasound. High frequency ultrasound is the examination of synovium, cartilage and collateral ligament of knee joint based on two-dimensional ultrasound. Contrast-enhanced ultrasound (CEUS) refers to the contrast examination of synovium in knee joint patients with synovial hyperplasia. <strong>Result: </strong>Among them, the suprapatellar sac effusion and synovial thickening of Qi stagnation and blood stasis type were more obvious than those of cold-dampness arthralgia type (P < 0.05), and the degree of wear of the intercondylar cartilage of cold-dampness arthralgia type was more obvious than that of Qi stagnation. The blood stasis type is heavier and the meniscus bulge is higher (P < 0.05). The radiography of synovial hyperplasia showed that the area under the curve of Qi stagnation and blood stasis type was higher than that of cold dampness arthralgia type (P < 0.05), and the peak time was significantly shorter than that of cold dampness arthralgia type. There was no statistical difference in effective peak gradient and onset time of type (P > 0.05). <strong>Conclusion: </strong>To a certain extent, the high-frequency ultrasound and contrast-enhanced ultrasound performance of knee osteoarthritis can be used as a dialectical reference for different TCM syndrome types.展开更多
Shoulder ultrasonography is approved as the examination of choice for rotator cuff abnormality in many centers around the world since it is an inexpensive and safe tool for investigation of rotator cuff abnormalities....Shoulder ultrasonography is approved as the examination of choice for rotator cuff abnormality in many centers around the world since it is an inexpensive and safe tool for investigation of rotator cuff abnormalities. The goal of this study was to determine the ultrasound findings in patients with acute shoulder joint pain, and also to identify possible predictors of shoulder pain, as well as to compare the ultrasound diagnostic performance to that of MRI in such condition. A total of 65 (mean age 28 ± 1.2 years) consequential patients were recruited for a period of six months between July 2015 and June 2016 in this study. Collected data were confined on age, medical history, and clinical symptoms. Shoulder ultrasound was performed with a linear array transducer (10 - 15 MHz) connected to HI vision Avius ultrasound unit;Hitachi. MRI for the shoulder joint was performed in all cases to confirm the ultrasound results, using 1.5-T MRI system (Magnetom Espree);Siemens. Statistical analysis was completed using the standard Statistical Package for the Social Sciences (SPSS Inc., Chicago, IL, USA) version 20 for windows. Ultrasound manages to determine the causes of acute shoulder joint pain in 98% of the patients. Fitted achievement values for shoulder ultrasound in the diagnosis the causes of shoulder joint pain were 100% sensitivity and a range of 96% to 100% of accuracy. Ultrasound presents a high sensitivity and accuracy in diagnosis a wide spectrum of shoulder joint lesions, with a diagnostic performance near to that of MRI.展开更多
High-frequency image technique has been widely applied in medical diagnosis recently. For high voltage protection, high speed stage and trigger control circuitry are difficult to implement a high-frequency ultrasound ...High-frequency image technique has been widely applied in medical diagnosis recently. For high voltage protection, high speed stage and trigger control circuitry are difficult to implement a high-frequency ultrasound imaging system. In this study, we utilized a linear servo with high noise tolerance and a novel multi-depth expression method to overcome those issues in developed high-speed image system. B-mode image of the chicken phantom by 25 MHz transducer shows the resolution of lateral and axial resolutions are up to 123 μm and 59 μm respectively. In addition, the experiment demonstrates that the axial resolution and depth of field (DOF) can be improved by time gain compensation(TGC) and multi-depth method. The results indicate that the proposed system could achieve over 24 fps for 1 mm scan distance and 100 lines per frame. In the future, the developed system is potential for other clinical applications such as ophthalmology and dermatology.展开更多
The purpose of the research was to evaluate the role of high frequency ultrasound in monitoring and efficacy assessment of anti-cellulite treatments. A group of 66 women used 3 different types of anti-cellulite treatm...The purpose of the research was to evaluate the role of high frequency ultrasound in monitoring and efficacy assessment of anti-cellulite treatments. A group of 66 women used 3 different types of anti-cellulite treatments;additionally a placebo group (n = 18) was created. The μ-Scan ultrasound device with a 35 MHz mechanical probe was used for the examinations. The following parameters were subjected to the ultrasound evaluation: epidermis thickness, dermis thickness, dermis echogenicity, the length and area of subcutaneous tissue bands projecting into the dermis (dermis-hypodermis junction), as well as the presence/absence of edema within the dermis. As a result of anti-cellulite treatment, the length and area of dermis-hypodermis junction significantly decreased, and dermis echogenicity significantly increased. Ultrasound imaging made it possible to evaluate the efficacy of the applied treatments. The high frequency ultrasound is a useful imaging technique for the application in aesthetic dermatology and cosmetology.展开更多
This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of trans...This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
Lattice-matched In0.5 Ga0.47 As/In0.52 Al 0.48 As high electron mobility transistors (HEMTs) with a cutoff frequency (ft) as high as 218GHz are reported. This fT is the highest value ever reported for HEMTs in Chi...Lattice-matched In0.5 Ga0.47 As/In0.52 Al 0.48 As high electron mobility transistors (HEMTs) with a cutoff frequency (ft) as high as 218GHz are reported. This fT is the highest value ever reported for HEMTs in China. These devices also demonstrate excellent DC characteristics:the extrinsic transconductance is 980mS/mm and the maximum current density is 870mA/mm. The material structure and all the device fabrication technology in this work were developed by our group.展开更多
A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequenc...A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.展开更多
A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculati...A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.展开更多
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the grants from the Key Research and Development Program of Shaanxi Province(No.2023-ZDLSF-22)National Key R&D Program of China(No.2023YFA1801200)+4 种基金National Natural Science Foundation of China(Nos.81901751 and 82272010)Key Clinical Trial Program of Tangdu Hospital(No.2021LCYJ006)Program for Innovative Research Team of Shaanxi Province(No.2020TD-038)Top Talent Program of Tangdu Hospital and Innovative Talent Support Program of Shaanxi Province(No.2022KJXX-106)the Special Fund for Aerospace Medical Research.
文摘Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.Methods:A total of 3053 healthy Han Chinese adults(1922 women)aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022.The real-time tracking of common carotid artery walls was achieved by the radio frequency(RF)ultrasound system.The IMT,diameter,compliance coefficient,βstiffness,local pulse wave velocity(PWV),local systolic blood pressure,augmented pressure(AP),and augmentation index(AIx)were then automatically measured and reported.Data were stratified by age groups and sex.The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions.The major clinical determinants of carotid properties were identified by Pearson’s correlation,multiple linear regression,and analyses of covariance.Results:All the parameters of carotid properties demonstrated significantly age-related trajectories.Women showed thinner IMT,smaller carotid diameter,larger AP,and AIx than men.Theβstiffness and PWV were significantly higher in men than women before forties,but the differences reversed after that.The increase rate of carotid IMT(5.5µm/year in women and 5.8µm/year in men)and diameter(0.03 mm/year in both men and women)were similar between men and women.For the stiffness and wave reflections,women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes(all P for age by sex interaction<0.05).The blood pressures,body mass index(BMI),and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex.Conclusions:The age-and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established.The blood pressures,BMI,and triglyceride levels should be considered for clinical application of corresponding reference values.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金The author sincerely appreciates the help provided by the research team(Wheel/rail interaction,Vibration and Noise Research Team)and CRRC.In addition,this study has also been supported by Science and Technology Research Plan of China Railway General Corporation(No.P2019J002,N2022J009)China Association of Science and Technology Young Talent Support Project(No.2019QNRC001)+1 种基金National Natural Science Foundation(No.U1934203)Sichuan Science and Technology Program(No.2022NSFSC0469,2023NSFSC0374,2023YFH0049).
文摘Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.
文摘Pancreatic malignancy is still the most lethal gastrointestinal malignancy.It has a very poor prognosis with low survival rate.Surgery is still the main treatment option for pancreatic malignancy.Most patients already have locally advanced and even late stage disease due to non-specific abdominal symptoms.Even though some cases are still suitable for surgical treatment,due to its aggressiveness adjuvant chemotherapy is becoming the standard treatment for controlling the disease.Radiofrequency ablation(RFA)is a thermal therapy that has been used as one of the standard treatments for liver malignancy.It can also be performed intraoperatively.There are several reports on percutaneous RFA treatment for pancreatic malignancy using transabdominal ultrasound and guided by computed tomography scan.However,due to its anatomical location and the risk of high radiation exposure,these methods seem to be very limited.Endoscopic ultrasound(EUS)has been widely used for pancreatic abnormality evaluation due to its ability to detect more accurately,especially small pancreatic lesions,compared to other imaging modalities.By the EUS approach,it is easier to achieve good visualization of tumor ablation and necrosis as the echoendoscope position is closer to the tumor area.Based on studies and a recent meta-analysis,EUS-guided RFA is a promising treatment approach for most pancreatic malignancy cases,but most studies only collected data from a small sample size.Larger studies are needed before clinical recommendations can be made.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
基金supported by the National Natural ScienceFoundation of China (No.30370574)
文摘This study evaluated the effects of early treatment with β-adrenergic blocker metoprolol on ventricular remodeling and function after acute myocardial infarction (AMI) by using high frequency ultrasound.The relationship between the efficacy and the expression level of cardiac myocardial inflammatory cytokine was examined in rats.The rat model of AMI was induced by ligating the left ante-rior descending artery.The surviving rats were randomly assigned to two experimental groups:MI control (MI) group and MI metoprolol (MI-B) group,with the rats undergoing sham operation serving as normal control (Sham).MI-B group was given metoprolol for 4 weeks (refer to the CCS-2 protocol) and the other two groups received equal volume of saline via intragastric (i.g.) administation.The ventricular remodeling and function were evaluated by high frequency ultrasound 4 weeks after the treatment.Then all rats were sacrificed for pathological examination and immunohistochemistrical detection of inflammatory cytokines,including IL-1β,IL-6,IL-10 and TNF-α.Compared with the MI group,the left ventricular end-systolic dimension,end-diastolic dimension,end-systolic volume and end-diastolic volume of the MI-B group were significantly decreased (P<0.01),while the left ventricular anterior wall end-diastolic thickness,ejection fraction and fractional shortening were obviously increased (P<0.01).The conspicuous improvement in the left ventricular morphology and function was coincident with the markedly reduced TNF-α and IL-1β expression and the increased IL-10 expression.We are led to conclude that early metoprolol treatment for AMI can regulate myocardial inflammatory cytokine expression to improve cardiac function and the underlying mechanism might be that it decreases the level of pro-inflammatory cytokines and increases the level of its anti-inflammatory counterparts in cardiac myocytes.Our study also showed that echocardiography is a useful technique for the structural and functional assessment of left ventricle after acute myocardial infarction.
文摘Objective: To explore the clinical diagnostic value of transperineal volume ultrasound combined with two-dimensional high-frequency ultrasound for anal fistula. Methods: A total of 52 patients with anal fistula admitted to the Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine from December 2017 to July 2018 were selected. They were all undergoing transperineal 3D volume ultrasound combined with 2D high-frequency ultrasound examination, and the diagnosis results were analyzed. The results of ultrasonography and surgical pathology were compared. Results: Among 52 patients, 3D volume ultrasound combined with 2D high-frequency ultrasound were used to diagnose 32 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 5 cases of supra-sphincter type, and 1 case of extra-sphincter type. T supervisor classification accuracy rate is 90%. The detection rate of branch pipes was 92%, and the compliance rate of internal fistula was 95%. Two-dimensional high-frequency ultrasound was used to diagnose 34 cases of anal fistula intersphincteric type, 14 cases of transsphincter type, 4 cases of supra-sphincter type, and 0 cases of extra-sphincter type. The detection rate of branch canals was 42%, and the accuracy of type classification was 90%. The coincidence rate was 95%. There was a statistically significant difference in the detection rate of the anal fistula branch and the coincidence rate of the internal fistula between the two methods (both P Conclusion: 1) The overall coincidence rate of three-dimensional volumetric ultrasound combined with two-dimensional high-frequency ultrasound in the diagnosis of anal fistula is high;2) Three-dimensional volumetric ultrasound technology has great application prospects in infants and anal fistulas.
文摘<strong>Objective:</strong> To explore the application value of high-frequency ultrasound and contrast-enhanced ultrasound in different syndrome types of knee osteoarthritis, and to provide more imaging evidence for clinical diagnosis and treatment. <strong>Method:</strong> Sixty patients with KOA were selected according to TCM classification, which were mainly divided into Qi stagnation and blood stasis type and cold-dampness blockage type. All knee joints were routinely examined by high frequency ultrasound, and those with synovial hyperplasia were examined by contrast-enhanced ultrasound. High frequency ultrasound is the examination of synovium, cartilage and collateral ligament of knee joint based on two-dimensional ultrasound. Contrast-enhanced ultrasound (CEUS) refers to the contrast examination of synovium in knee joint patients with synovial hyperplasia. <strong>Result: </strong>Among them, the suprapatellar sac effusion and synovial thickening of Qi stagnation and blood stasis type were more obvious than those of cold-dampness arthralgia type (P < 0.05), and the degree of wear of the intercondylar cartilage of cold-dampness arthralgia type was more obvious than that of Qi stagnation. The blood stasis type is heavier and the meniscus bulge is higher (P < 0.05). The radiography of synovial hyperplasia showed that the area under the curve of Qi stagnation and blood stasis type was higher than that of cold dampness arthralgia type (P < 0.05), and the peak time was significantly shorter than that of cold dampness arthralgia type. There was no statistical difference in effective peak gradient and onset time of type (P > 0.05). <strong>Conclusion: </strong>To a certain extent, the high-frequency ultrasound and contrast-enhanced ultrasound performance of knee osteoarthritis can be used as a dialectical reference for different TCM syndrome types.
文摘Shoulder ultrasonography is approved as the examination of choice for rotator cuff abnormality in many centers around the world since it is an inexpensive and safe tool for investigation of rotator cuff abnormalities. The goal of this study was to determine the ultrasound findings in patients with acute shoulder joint pain, and also to identify possible predictors of shoulder pain, as well as to compare the ultrasound diagnostic performance to that of MRI in such condition. A total of 65 (mean age 28 ± 1.2 years) consequential patients were recruited for a period of six months between July 2015 and June 2016 in this study. Collected data were confined on age, medical history, and clinical symptoms. Shoulder ultrasound was performed with a linear array transducer (10 - 15 MHz) connected to HI vision Avius ultrasound unit;Hitachi. MRI for the shoulder joint was performed in all cases to confirm the ultrasound results, using 1.5-T MRI system (Magnetom Espree);Siemens. Statistical analysis was completed using the standard Statistical Package for the Social Sciences (SPSS Inc., Chicago, IL, USA) version 20 for windows. Ultrasound manages to determine the causes of acute shoulder joint pain in 98% of the patients. Fitted achievement values for shoulder ultrasound in the diagnosis the causes of shoulder joint pain were 100% sensitivity and a range of 96% to 100% of accuracy. Ultrasound presents a high sensitivity and accuracy in diagnosis a wide spectrum of shoulder joint lesions, with a diagnostic performance near to that of MRI.
文摘High-frequency image technique has been widely applied in medical diagnosis recently. For high voltage protection, high speed stage and trigger control circuitry are difficult to implement a high-frequency ultrasound imaging system. In this study, we utilized a linear servo with high noise tolerance and a novel multi-depth expression method to overcome those issues in developed high-speed image system. B-mode image of the chicken phantom by 25 MHz transducer shows the resolution of lateral and axial resolutions are up to 123 μm and 59 μm respectively. In addition, the experiment demonstrates that the axial resolution and depth of field (DOF) can be improved by time gain compensation(TGC) and multi-depth method. The results indicate that the proposed system could achieve over 24 fps for 1 mm scan distance and 100 lines per frame. In the future, the developed system is potential for other clinical applications such as ophthalmology and dermatology.
文摘The purpose of the research was to evaluate the role of high frequency ultrasound in monitoring and efficacy assessment of anti-cellulite treatments. A group of 66 women used 3 different types of anti-cellulite treatments;additionally a placebo group (n = 18) was created. The μ-Scan ultrasound device with a 35 MHz mechanical probe was used for the examinations. The following parameters were subjected to the ultrasound evaluation: epidermis thickness, dermis thickness, dermis echogenicity, the length and area of subcutaneous tissue bands projecting into the dermis (dermis-hypodermis junction), as well as the presence/absence of edema within the dermis. As a result of anti-cellulite treatment, the length and area of dermis-hypodermis junction significantly decreased, and dermis echogenicity significantly increased. Ultrasound imaging made it possible to evaluate the efficacy of the applied treatments. The high frequency ultrasound is a useful imaging technique for the application in aesthetic dermatology and cosmetology.
文摘This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
文摘Lattice-matched In0.5 Ga0.47 As/In0.52 Al 0.48 As high electron mobility transistors (HEMTs) with a cutoff frequency (ft) as high as 218GHz are reported. This fT is the highest value ever reported for HEMTs in China. These devices also demonstrate excellent DC characteristics:the extrinsic transconductance is 980mS/mm and the maximum current density is 870mA/mm. The material structure and all the device fabrication technology in this work were developed by our group.
文摘A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.
文摘A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.