Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two ...The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two satellites that are to be launched in the near future.Since these two low Earth orbit(LEO)satellites will operate in circular orbits,with an inclination of about 41°,they are expected to provide essential measurements covering the Earth’s lower-latitude regions—including,especially,the South Atlantic Anomaly(SAA).This special issue presents 18 articles to provide the international scientific community with details regarding the mission’s goals,relevant scientific research,on-board payloads,and international collaborations.Contributors are members of the scientific and engineering groups involved in the mission.In this preface,we categorize the articles and give some brief comments or editor’s recommendations.展开更多
The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s f...The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.展开更多
The precise glacier boundary is a fundamental requirement for glacier inventory,the assessment of climate change and water management in remote mountain areas.However,some glaciers in mountain areas are covered by deb...The precise glacier boundary is a fundamental requirement for glacier inventory,the assessment of climate change and water management in remote mountain areas.However,some glaciers in mountain areas are covered by debris.The high spatial resolution images bring opportunities in mapping debris-covered glaciers.To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers,this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1(GF-1)wide-field-view(WFV)images,the ratio of the thermal infrared imagery and morphometric parameters(DEM and slope)with 30 m resolution.The overall accuracy of 90.94%indicated that this method was effective for mapping supraglacial terrain in mountain areas.Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain.The user's and producer's accuracies of glacier area were also improved from 89.67%and 85.95%to 92.83%and 90.34%,respectively.GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.展开更多
Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe ...Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe global one-dimensional(1D)mantle conductivity structures.Using this scheme,we present a new global mantle conductivity model by analyzing over 8 years of Swarm satellite magnetic data.First,after sophisticated data selection procedures and the removal of core and crustal fields,the inducing and induced spherical harmonic coefficients of magnetic potential due to the magnetospheric ring current are derived.Second,satellite Cresponses are estimated from the time series of these coefficients.Finally,the observed responses are inverted for both smooth and threejump conductivity models using a quasi-Newton algorithm.The obtained conductivity models are in general agreement with previous global mantle conductivity models.A comparison of our conductivity model with the laboratory conductivity model suggests the mean state of the upper mantle and transition zone is relatively dry.This scheme can be used to process the forthcoming Macao Science Satellite-1 magnetic data.展开更多
INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and pla...INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and plays an important role in sustainable economic development. At thesame time the ocean has a very important effect on the worldwide environmental changes.展开更多
Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the ...Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the chlorophyll a concentration in Xiangxi Bay, in the Three Gorges Reservoir, was predicted using HJ-1 satellite imagery. Several models were established based on a correlation analysis between in situ measurements of the chlorophyll a concentration and the values obtained from satellite images of the study area from January 2010 to December 2011. Chlorophyll a concentrations in Xiangxi Bay were predicted based on the established models. The results show that the maximum correlation is between the reflectance of the band combination of B4/(B2+B3) and in situ measurements of chlorophyll a concentration. The root mean square errors of the predicted values using the linear and quadratic models are 18.49 mg/m3 and 18.52 mg/m3, respectively, and the average relative errors are 37.79% and 36.79%, respectively. The results provide a reference for water bloom prediction in typical tributaries of the Three Gorges Reservoir and contribute to large-scale remote sensing monitoring and water quality management.展开更多
The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. ...The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. This study aims at improving the mono-window algorithm for retrieving LST from IRS4 data. Based on atmospheric radiative transfer simulations,a model for correcting the VZA effects on atmospheric transmittance is proposed. In addition,a generalized model for calculating the effective mean atmospheric temperature is developed. Validation with the simulated dataset based on standard atmospheric profiles reveals that the improved mono-window algorithm for IRS4 obtains high accuracy for LST retrieval,with the mean absolute error (MAE) and root mean square error (RMSE) being 1.0 K and 1.1 K,respectively. Numerical experiment with the radiosonde profile acquired in Beijing in winter demonstrates that the improved mono-window algorithm exhibits excellent ability for LST retrieval,with MAE and RMSE being 0.6 K and 0.6 K,respectively. Further application in Qinghai Lake and comparison with the Moderate-Resolution Imaging Spectroradiometer (MODIS) LST product suggest that the improved mono-window algorithm is applicable and feasible in actual conditions.展开更多
During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was la...During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.展开更多
In order to promote the application of Beijing-1 small satellite(BJ-1) remote sensing data,the multispectral and panchromatic images captured by BJ-1 were used for land cover classification in Pangzhuang Coal Mining.A...In order to promote the application of Beijing-1 small satellite(BJ-1) remote sensing data,the multispectral and panchromatic images captured by BJ-1 were used for land cover classification in Pangzhuang Coal Mining.An improved Intensity-Hue-Saturation(IHS) fusion algorithm is proposed to fuse panchromatic and multispectral images,in which intensity component and panchromatic image are combined using the weights determined by edge pixels in the panchromatic image identified by grey absolute correlation degree.This improved IHS fusion algorithm outper-forms traditional IHS fusion method to a certain extent,evidenced by its ability in preserving spectral information and enhancing spatial details.Dempster-Shafer(D-S) evidence theory was adopted to combine the outputs of three member classifiers to generate the final classification map with higher accuracy than that by any individual classifier.Based on this study,we conclude that Beijing-1 small satellite remote sensing images are useful to monitor and analyze land cover change and ecological environment degradation in mining areas,and the proposed fusion algorithms at data and decision levels can integrate the advantages of multi-resolution images and multiple classifiers,improve the overall accuracy and produce a more reliable land cover map.展开更多
A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons an...A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).展开更多
This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomogra...This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomography(CIT) algorithm program is validated by numerical experiment. Two examples are shown, for daytime and nighttime respectively. The Equatorial Ionization Anomaly(EIA) can be seen, and the northern crest core is located at ~20°N in the reconstruction image at 07:28 UTC on 20 July 2018(daytime).Disturbances are shown in the reconstruction image at 18:40 UTC on 13 July 2018(nighttime). We find that beacon measurements are more consistent with ionosonde measurements than model results, by comparing Nm F2 at three sites at Lanzhou, Chongqing, and Kunming; consistency with ionosonde measurements validates beacon measurements. Finally, we have studied Vertical Total Electron Content(VTEC) variations from ground to ~500 km(the height of CSES-1 orbit) and ratios of VTEC between beacon measurements and CODE(Center for Orbit Determination in Europe) data. VTEC variation from ground to ~500 km has a range of 7.2–16.5 TECU for the daytime case and a range of 1.1–1.7 TECU for the nighttime case. The Beacon/CODE ratio of VTEC varies with latitude and time. The mean Beacon/CODE ratio is 0.69 for the daytime case and 0.26 for the nighttime case. The fact that the nighttime case yields lower ratios indicates the higher altitude of the ionosphere during nighttime when the ionosphere is assumed to be a thin layer.展开更多
Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data.The realization of the observation data geometric precision c...Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data.The realization of the observation data geometric precision correction is of great significance for macro and dynamic ecological environment monitoring.The paper analyzed the parameter characteristics of HJ-1 satellite and geometric features of HJ-1 satellite level 2 data(systematic geo- corrected data).Based on this,the overall HJ- 1 multi- sensor geometric correction flow and charge-coupled device(CCD) automatic geometric precision correction method were designed.Actual operating data showed that the method could achieve good result for automatic geometric precision correction of HJ-1 satellite data,automatic HJ-1 CCD image geometric precision correction accuracy could be achieved within two pixels and automatic matching accuracy between the images of same satellite could be obtained less than one pixel.展开更多
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
基金The support from National Natural Science Foundation of China(grant No.12250013)。
文摘The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two satellites that are to be launched in the near future.Since these two low Earth orbit(LEO)satellites will operate in circular orbits,with an inclination of about 41°,they are expected to provide essential measurements covering the Earth’s lower-latitude regions—including,especially,the South Atlantic Anomaly(SAA).This special issue presents 18 articles to provide the international scientific community with details regarding the mission’s goals,relevant scientific research,on-board payloads,and international collaborations.Contributors are members of the scientific and engineering groups involved in the mission.In this preface,we categorize the articles and give some brief comments or editor’s recommendations.
文摘The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.
基金Science&Technology Basic Resources Investigation Program of China(Grant Nos.2017FY100502,2017FY100503)the National Natural Science Foundation of China(Grant Nos.41471291,41801273)
文摘The precise glacier boundary is a fundamental requirement for glacier inventory,the assessment of climate change and water management in remote mountain areas.However,some glaciers in mountain areas are covered by debris.The high spatial resolution images bring opportunities in mapping debris-covered glaciers.To discuss the capability of Chinese GaoFen-1 satellite lacking the short wave infrared band and thermal infrared band in mapping glaciers,this study distinguished supraglacial terrain from surrounding debris by combining GaoFen-1(GF-1)wide-field-view(WFV)images,the ratio of the thermal infrared imagery and morphometric parameters(DEM and slope)with 30 m resolution.The overall accuracy of 90.94%indicated that this method was effective for mapping supraglacial terrain in mountain areas.Comparing this result with the combination of GF-1 WFV and low-resolution morphometric parameters shows that a high-quality DEM and the thermal infrared band enhanced the accuracy of glacier mapping especially debris-covered ice in steep terrain.The user's and producer's accuracies of glacier area were also improved from 89.67%and 85.95%to 92.83%and 90.34%,respectively.GF data is recommended for mapping heavily debris-covered glaciers and will be combined with SAR data for future studies.
基金financially supported by the National Natural Science Foundation of China(41922027,41830107,42142034,41874086)Innovation-Driven Project of Central South University(2020CX012)+4 种基金Macao FoundationMacao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)the Hunan Provincial Innovation Foundation for Postgraduate(CX20210277)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0259)。
文摘Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe global one-dimensional(1D)mantle conductivity structures.Using this scheme,we present a new global mantle conductivity model by analyzing over 8 years of Swarm satellite magnetic data.First,after sophisticated data selection procedures and the removal of core and crustal fields,the inducing and induced spherical harmonic coefficients of magnetic potential due to the magnetospheric ring current are derived.Second,satellite Cresponses are estimated from the time series of these coefficients.Finally,the observed responses are inverted for both smooth and threejump conductivity models using a quasi-Newton algorithm.The obtained conductivity models are in general agreement with previous global mantle conductivity models.A comparison of our conductivity model with the laboratory conductivity model suggests the mean state of the upper mantle and transition zone is relatively dry.This scheme can be used to process the forthcoming Macao Science Satellite-1 magnetic data.
文摘INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and plays an important role in sustainable economic development. At thesame time the ocean has a very important effect on the worldwide environmental changes.
基金supported by the National Natural Science Foundation of China(Grants No.51009080 and 51179095)the Research Innovation Fund for Postgraduates in China Three Gorges University(Grant No.2012CX012)
文摘Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the chlorophyll a concentration in Xiangxi Bay, in the Three Gorges Reservoir, was predicted using HJ-1 satellite imagery. Several models were established based on a correlation analysis between in situ measurements of the chlorophyll a concentration and the values obtained from satellite images of the study area from January 2010 to December 2011. Chlorophyll a concentrations in Xiangxi Bay were predicted based on the established models. The results show that the maximum correlation is between the reflectance of the band combination of B4/(B2+B3) and in situ measurements of chlorophyll a concentration. The root mean square errors of the predicted values using the linear and quadratic models are 18.49 mg/m3 and 18.52 mg/m3, respectively, and the average relative errors are 37.79% and 36.79%, respectively. The results provide a reference for water bloom prediction in typical tributaries of the Three Gorges Reservoir and contribute to large-scale remote sensing monitoring and water quality management.
基金Under the auspices of Opening Funding of State Key Laboratory for Remote Sensing ScienceNational High-tech Research and Development Program (863 Program) (No. 2007AA120205, 2007AA120306)
文摘The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. This study aims at improving the mono-window algorithm for retrieving LST from IRS4 data. Based on atmospheric radiative transfer simulations,a model for correcting the VZA effects on atmospheric transmittance is proposed. In addition,a generalized model for calculating the effective mean atmospheric temperature is developed. Validation with the simulated dataset based on standard atmospheric profiles reveals that the improved mono-window algorithm for IRS4 obtains high accuracy for LST retrieval,with the mean absolute error (MAE) and root mean square error (RMSE) being 1.0 K and 1.1 K,respectively. Numerical experiment with the radiosonde profile acquired in Beijing in winter demonstrates that the improved mono-window algorithm exhibits excellent ability for LST retrieval,with MAE and RMSE being 0.6 K and 0.6 K,respectively. Further application in Qinghai Lake and comparison with the Moderate-Resolution Imaging Spectroradiometer (MODIS) LST product suggest that the improved mono-window algorithm is applicable and feasible in actual conditions.
文摘During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.
基金Under the auspices of National Natural Science Foundation of China (No. 40871195)Opening Fund of Beijing-1Small Satellite Data Applications from State Key Laboratory for Remote Sensing Science (No. 200709)National High Technology Research and Development Program of China (No. 2007AA12Z162)
文摘In order to promote the application of Beijing-1 small satellite(BJ-1) remote sensing data,the multispectral and panchromatic images captured by BJ-1 were used for land cover classification in Pangzhuang Coal Mining.An improved Intensity-Hue-Saturation(IHS) fusion algorithm is proposed to fuse panchromatic and multispectral images,in which intensity component and panchromatic image are combined using the weights determined by edge pixels in the panchromatic image identified by grey absolute correlation degree.This improved IHS fusion algorithm outper-forms traditional IHS fusion method to a certain extent,evidenced by its ability in preserving spectral information and enhancing spatial details.Dempster-Shafer(D-S) evidence theory was adopted to combine the outputs of three member classifiers to generate the final classification map with higher accuracy than that by any individual classifier.Based on this study,we conclude that Beijing-1 small satellite remote sensing images are useful to monitor and analyze land cover change and ecological environment degradation in mining areas,and the proposed fusion algorithms at data and decision levels can integrate the advantages of multi-resolution images and multiple classifiers,improve the overall accuracy and produce a more reliable land cover map.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402704 and2016YFC1401007the International Science and Technology Cooperation Project of China under contract No.2011DFA22260
文摘A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).
基金supported by the “China Seismo-Electromagnetic Satellite (CSES)” projectthe 13th Five-Year Technology Program (Grant No. 315030409)
文摘This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomography(CIT) algorithm program is validated by numerical experiment. Two examples are shown, for daytime and nighttime respectively. The Equatorial Ionization Anomaly(EIA) can be seen, and the northern crest core is located at ~20°N in the reconstruction image at 07:28 UTC on 20 July 2018(daytime).Disturbances are shown in the reconstruction image at 18:40 UTC on 13 July 2018(nighttime). We find that beacon measurements are more consistent with ionosonde measurements than model results, by comparing Nm F2 at three sites at Lanzhou, Chongqing, and Kunming; consistency with ionosonde measurements validates beacon measurements. Finally, we have studied Vertical Total Electron Content(VTEC) variations from ground to ~500 km(the height of CSES-1 orbit) and ratios of VTEC between beacon measurements and CODE(Center for Orbit Determination in Europe) data. VTEC variation from ground to ~500 km has a range of 7.2–16.5 TECU for the daytime case and a range of 1.1–1.7 TECU for the nighttime case. The Beacon/CODE ratio of VTEC varies with latitude and time. The mean Beacon/CODE ratio is 0.69 for the daytime case and 0.26 for the nighttime case. The fact that the nighttime case yields lower ratios indicates the higher altitude of the ionosphere during nighttime when the ionosphere is assumed to be a thin layer.
文摘Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data.The realization of the observation data geometric precision correction is of great significance for macro and dynamic ecological environment monitoring.The paper analyzed the parameter characteristics of HJ-1 satellite and geometric features of HJ-1 satellite level 2 data(systematic geo- corrected data).Based on this,the overall HJ- 1 multi- sensor geometric correction flow and charge-coupled device(CCD) automatic geometric precision correction method were designed.Actual operating data showed that the method could achieve good result for automatic geometric precision correction of HJ-1 satellite data,automatic HJ-1 CCD image geometric precision correction accuracy could be achieved within two pixels and automatic matching accuracy between the images of same satellite could be obtained less than one pixel.