A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ign...A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.展开更多
The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau...The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.展开更多
Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclo...Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.展开更多
Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response...Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.展开更多
The emergence of stretchable electronic technology has led to the development of many industries and facilitated many unprecedented applications,owing to its ability to bear var-ious deformations.However,conventional ...The emergence of stretchable electronic technology has led to the development of many industries and facilitated many unprecedented applications,owing to its ability to bear var-ious deformations.However,conventional solid elastomer sub-strates and encapsulation can severely restrict the free motion and deformation of patterned interconnects,leading to poten-tial mechanical failures and electrical breakdowns.To address this issue,we propose a design strategy of porous elastomer substrate and encapsulation to improve the stretchability of serpentine interconnects in island-bridge structures.The ser-pentine interconnects are fully bonded to the elastomer sub-strate,while segments above circular pores remain suspended,allowing for free deformation and a substantial improvement in elastic stretchability compared to the solid substrates.The pores ensure unimpeded interconnect deformations,and mod-erate porosity provides support while maintaining the initial planar state.Compared to conventional solid configurations,finite element analysis(FEA)demonstrates a substantial enhancement of elastic stretchability(e.g.=9 times without encapsulation and=7 times with encapsulation).Uniaxial cyc-lic loading fatigue experiments validate the enhanced elastic stretchability,indicating the mechanical stability of the porous design.With its intrinsic advantages in permeability,the pro-posed strategy has the potential to offer insightful inspiration and novel concepts for advancing the field of stretchable inorganic electronics.展开更多
The high-density server is featured as low power, low volume, and high computational density. With the rising use of high-density servers in data-intensive and large-scale web applications, it requires a high-performa...The high-density server is featured as low power, low volume, and high computational density. With the rising use of high-density servers in data-intensive and large-scale web applications, it requires a high-performance and cost-efficient intra-server interconnection network. Most of state-of-the-art high-density servers adopt the fully-connected intra-server network to attain high network performance. Unfortunately, this solution costs too much due to the high degree of nodes. In this paper, we exploit the theoretically optimized Moore graph to interconnect the chips within a server. Accounting for the suitable size of applications, a 50-size Moore graph, called Hoffman-Singleton graph, is adopted. In practice, multiple chips should be integrated onto one processor board, which means that the original graph should be partitioned into homogeneous connected subgraphs. However, the existing partition scheme does not consider above problem and thus generates heterogeneous subgraphs. To address this problem, we propose two equivalent-partition schemes for the Hoffman-Singleton graph. In addition, a logic-based and minimal routing mechanism, which is both time and area efficient, is proposed. Finally, we compare the proposed network architecture with its counterparts, namely the fully-connected, Kautz and Torus networks. The results show that our proposed network can achieve competitive performance as fully-connected network and cost close to Torus.展开更多
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA_(2)5051000)the National Key R&D Program of China(Grant No.2023YFA1608400)+1 种基金the National Natural Science Foundation of China(Grant No.12005008)the Natural Science Foundation of Top Talent of SZTU(Grant No.GDRC202209).
文摘A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.
文摘The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.
基金the support of Deutsche Forschungsgemeinschaft,DFG#FR 1553/6-1
文摘Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.
基金This work was supported by the National Natural Science Foundation of China(51490680,51490683).
文摘Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.
基金support from the National Natural Science Foundation of China (Grant No.12172027)the Fundamental Research Funds for the Central Universities.X.M.acknowledges support from the National Natural Science Foundation of China (Grant Nos.12272023 and U23A20111)。
文摘The emergence of stretchable electronic technology has led to the development of many industries and facilitated many unprecedented applications,owing to its ability to bear var-ious deformations.However,conventional solid elastomer sub-strates and encapsulation can severely restrict the free motion and deformation of patterned interconnects,leading to poten-tial mechanical failures and electrical breakdowns.To address this issue,we propose a design strategy of porous elastomer substrate and encapsulation to improve the stretchability of serpentine interconnects in island-bridge structures.The ser-pentine interconnects are fully bonded to the elastomer sub-strate,while segments above circular pores remain suspended,allowing for free deformation and a substantial improvement in elastic stretchability compared to the solid substrates.The pores ensure unimpeded interconnect deformations,and mod-erate porosity provides support while maintaining the initial planar state.Compared to conventional solid configurations,finite element analysis(FEA)demonstrates a substantial enhancement of elastic stretchability(e.g.=9 times without encapsulation and=7 times with encapsulation).Uniaxial cyc-lic loading fatigue experiments validate the enhanced elastic stretchability,indicating the mechanical stability of the porous design.With its intrinsic advantages in permeability,the pro-posed strategy has the potential to offer insightful inspiration and novel concepts for advancing the field of stretchable inorganic electronics.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA06010401the National Natural Science Foundation of China under Grant Nos.61202056,61331008,61221062the HuaweiResearch Program of China under Grant No.YBCB2011030
文摘The high-density server is featured as low power, low volume, and high computational density. With the rising use of high-density servers in data-intensive and large-scale web applications, it requires a high-performance and cost-efficient intra-server interconnection network. Most of state-of-the-art high-density servers adopt the fully-connected intra-server network to attain high network performance. Unfortunately, this solution costs too much due to the high degree of nodes. In this paper, we exploit the theoretically optimized Moore graph to interconnect the chips within a server. Accounting for the suitable size of applications, a 50-size Moore graph, called Hoffman-Singleton graph, is adopted. In practice, multiple chips should be integrated onto one processor board, which means that the original graph should be partitioned into homogeneous connected subgraphs. However, the existing partition scheme does not consider above problem and thus generates heterogeneous subgraphs. To address this problem, we propose two equivalent-partition schemes for the Hoffman-Singleton graph. In addition, a logic-based and minimal routing mechanism, which is both time and area efficient, is proposed. Finally, we compare the proposed network architecture with its counterparts, namely the fully-connected, Kautz and Torus networks. The results show that our proposed network can achieve competitive performance as fully-connected network and cost close to Torus.