期刊文献+
共找到10,309篇文章
< 1 2 250 >
每页显示 20 50 100
Organolead halide perovskite:A rising player in high-efficiency solar cells 被引量:2
1
作者 Zhou Yang Wen-Hua Zhang 《催化学报》 SCIE EI CAS CSCD 北大核心 2014年第7期983-988,共6页
这个观点介绍对 organolead 卤化物的简短描述基于 perovskite 的太阳能电池包括结构和 perovskite 的基本性质,太阳能电池的分类,和他们是的潜力的眼界双人脚踏车的 subcells 光电的设备和大规模适用性。
关键词 太阳能电池 钙钛矿 卤化物 有机铅 TIO2薄膜 球员 功率转换效率 太阳光
下载PDF
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials 被引量:1
2
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field high-efficiency
下载PDF
Pinning energies of organic semiconductors in high-efficiency organic solar cells 被引量:1
3
作者 Xian’e Li Qilun Zhang +1 位作者 Xianjie Liu Mats Fahlman 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期52-61,共10页
With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning ener... With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance. 展开更多
关键词 organic semiconductors organic solar cells pinning energies integer charge transfer interface dipoles
下载PDF
High-throughput compositional mapping of triple-cation tin-lead perovskites for high-efficiency solar cells 被引量:1
4
作者 Rajendra Kumar Gunasekaran Jina Jung +8 位作者 Sung Woong Yang Jungchul Yun Yeonghun Yun Devthade Vidyasagar Won Chang Choi Chang-Lyoul Lee Jun Hong Noh Dong Hoe Kim Sangwook Lee 《InfoMat》 SCIE CSCD 2023年第4期25-38,共14页
Mixed tin-ead perovskites suffer from structural instability and rapid tin oxidation;thus,the investigation of their optimal composition ranges is important to address these inherent weaknesses.The critical role of tr... Mixed tin-ead perovskites suffer from structural instability and rapid tin oxidation;thus,the investigation of their optimal composition ranges is important to address these inherent weaknesses.The critical role of triple cations in mixed Sn–Pb iodides is studied by performing a wide range of compositional screenings over mechanochemically synthesized bulk and solution-processed thin films.A ternary phase map of FA(Sn_(0.6)Pb_(0.4))I_(3),MA(Sn_(0.6)Pb_(0.4))I_(3),and Cs(Sn_(0.6)Pb_(0.4))I_(3)is formed,and a promising composition window of(FA_(0.6-x)MA_(0.4)Cs_(x))Sn_(0.6)Pb_(0.4)I_(3)(0≤x≤0.1)is demonstrated through phase,photoluminescence,and stability evaluations.Solar cell performance and chemical stability across the targeted compositional space are investigated,and FA_(0.55)MA_(0.4)Cs_(0.05)Sn_(0.6)Pb_(0.4)I_(3)with strain-relaxed lattices,reduced defect densities,and improved oxidation stability is demonstrated.The inverted perovskite solar cells with the optimal composition demonstrate a power conversion efficiency of over 22%with an open-circuit voltage of 0.867 V,which corresponds to voltage loss of 0.363 V,promising for the development of narrow-bandgap perovskite solar cells. 展开更多
关键词 compositional engineering mixed tin-ead iodides narrow-bandgap perovskites perovskite solar cells strain relaxation ternary phase mapping
原文传递
Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells
5
作者 Mohammed M. Shabat Mahassen H. Elblbeisi Guillaume Zoppi 《Energy and Power Engineering》 2023年第8期265-276,共12页
Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite... Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite solar cell made of semiconductor materials. The design that has been suggested is Al:ZnO/ZnO/CdS/CsSnCl<sub>3</sub> and MoS<sub>2</sub>. The analysis focuses on how different characteristics of the material affect the device’s performance. The analysis of the data reveals that the architecture had 26.15% power conversion efficiency (PCE). The solar cell creates an interest in developing a non-toxic solar cell with low manufacturing costs, outstanding conversion efficiency, and stability. 展开更多
关键词 PEROVSKITE solar cell High Efficiency CSSnCl3 Electrical Properties SCAPS
下载PDF
Stitching Perovskite Grains with Perhydropoly(Silazane)Anti-Template-Agent for High-Efficiency and Stable Solar Cells Fabricated in Ambient Air
6
作者 Ting Wang Qu Yang +9 位作者 Yanli Chen Qiong Peng Xiaosi Qi Hui Shen Xuncheng Liu Shaohui Li Haixuan Yu Yan Shen Mingkui Wang Xiu Gong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期400-408,共9页
All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability a... All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability against moisture severely limits the fabrication environment for the high-efficiency devices,breaking through the confinement region to achieve scalable manufacturing has been the primary issue for future commercialization.Here,we develop a curing-anti-solvent strategy for fabricating high-quality and stable black-phase CsPbI_(3)perovskite films in ambient air by introducing an inorganic polymer perhydropolysilazane(PHPS)into methyl acetate to form anti-template agent.The cross-linked PHPS reduces moisture erosions while the hydrolyzate silanol network(–Si(OH)_(4)^(–))controls the perovskite crystal growth by forming Lewis adducts with PbI_(2)during the fabrication.The polycondensation adduct of Si–O–Si/Si–O–Pb strongly binds to CsPbI_(3)grains as a shield layer to hamper phase transition.Using the inorganic CsPbI_(3)perovskite thin-film with PHPS-modified anti-solvent processing as the light absorber,the n–i–p planar solar cell achieved an efficiency of 19.17%under standard illumination test conditions.More importantly,the devices showed excellent moisture stability,retaining about 90%of the initial efficiency after 1000 h under 30%RH. 展开更多
关键词 anti-template agent crystal growth perhydropolysilazane perovskite solar cells stability
下载PDF
Control of Phase Separation and Crystallization for High-Efficiency and Mechanically Deformable Organic Solar Cells
7
作者 Zicheng Ding Yi Zhang +4 位作者 Yueling Su Yin Wu Yanchun Han Kui Zhao Shengzhong(Frank)Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期389-397,共9页
Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow t... Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers,the photovoltaic efficiencies usually drops in the resulting OSCs.Herein,a high photovoltaic efficiency of 15.03%and a large crack-onset strain of 15.70%is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PM6),non-fullerene accepter 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(Y6),and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene(SEBS)through the control of phase separation and crystallization.By employing a high-boiling point solvent additive 1-chloronaphthalene(CN)with different solubilities for PM6 and Y6,the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered,allowing for the different molecular rearrangement and liquid-liquid phase separation evolution.Consequently,the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6,enabling effective mechanical deformation and charge generation/transport.The revealed corrections between the film-formation process,film microstructure,and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs. 展开更多
关键词 film microstructure mechanical deformation molecular aggregation dynamics photovoltaic performance stretchable organic solar cells
下载PDF
Pulsed Laser Annealed Ga Hyperdoped Poly-Si/SiO_(x)Passivating Contacts for High-Efficiency Monocrystalline Si Solar Cells
8
作者 Kejun Chen Enrico Napolitani +9 位作者 Matteo De Tullio Chun-Sheng Jiang Harvey Guthrey Francesco Sgarbossa San Theingi William Nemeth Matthew Page Paul Stradins Sumit Agarwal David L.Young 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期388-399,共12页
Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique... Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices. 展开更多
关键词 Ga hyperdoping Ga passivating contacts poly-Si/SiO_(x) pulsed laser melting silicon solar cell
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
9
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Seed-assisted growth for high-performance perovskite solar cells:A review
10
作者 Zhimin Fang Ting Nie +1 位作者 Jianning Ding Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期588-610,共23页
The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables eff... The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices. 展开更多
关键词 Perovskite solar cell SEED CRYSTALLIZATION Efficiency
下载PDF
Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
11
作者 潘赵耀 杨金彭 沈小双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期668-671,共4页
Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off ... Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off between the open-circuit voltage and the fill factor through two mechanisms:reduced surface recombination velocity and increased bulk recombination lifetime due to better perovskite crystallinity.From arguments of drift-diffusion simulations,we find that an increase in mobility and carrier recombination lifetime in bulk are the key factors for minimizing the resistance-effect from thicker PICs and achieving a maximum power conversion efficiency(PCE)at approximately 25%reduced contact area.Furthermore,the partially replacement of perovskite films with thicker PICs would result in a reduction in short-current density,but the relative low refractive index of the PICs imbedded into the high refractive index perovskite creates light trapping structures that compensate for this loss. 展开更多
关键词 perovskite solar cells NANOSTRUCTURE CRYSTALLINE mobility
下载PDF
H-and J-aggregation of conjugated small molecules in organic solar cells
12
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION Organic solar cells Small molecules EFFICIENCY STABILITY
下载PDF
Defect mediated losses and degradation of perovskite solar cells:Origin impacts and reliable characterization techniques
13
作者 Himangshu Baishy Ramkrishna Das Adhikari +5 位作者 Mayur Jagdishbhai Patel Deepak Yadav Tapashi Sarmah Mizanur Alam Manab Kalita Parameswar Krishnan lyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期217-253,共37页
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties... The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs. 展开更多
关键词 Perovskite solar cells Defects lon migration DEGRADATION Stability
下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells
14
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide RESIDUE REGULATION Perovskite solar cells Efficiency Stability
下载PDF
Dimethylamine oxalate manipulating CsPbI_(3) perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells
15
作者 Wenran Wang Xin Peng +7 位作者 Jianxin Zhang Jiage Lin Rong Huang Guizhi Zhang Huishi Guo Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期221-228,I0006,共9页
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as... Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells. 展开更多
关键词 solar cells PEROVSKITE CsPbI_(3) Carbon electrodes OXALATE
下载PDF
Manipulating Crystal Growth and Secondary Phase PbI_(2)to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives
16
作者 Yirong Wang Yaohui Cheng +5 位作者 Chunchun Yin Jinming Zhang Jingxuan You Jizheng Wang Jinfeng Wang Jun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期432-448,共17页
In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as... In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering.The cationic cellulose derivative C-Im-CN with cyano-imidazolium(Im-CN)cation and chloride anion prominently promotes the crystallization process,grain growth,and directional orientation of perovskite.Meanwhile,excess PbI_(2)is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains.These effects result in suppressing defect formation,decreasing grain boundaries,enhancing carrier extraction,inhibiting non-radiative recombination,and dramatically prolonging carrier lifetimes.Thus,the PSCs exhibit a high power conversion efficiency of 24.71%.Moreover,C-Im-CN has multiple interaction sites and polymer skeleton,so the unencapsulated PSCs maintain above 91.3%of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions.The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs. 展开更多
关键词 PEROVSKITE solar cells Defect passivation Biomass additives Crystal orientation
下载PDF
Constructing low-dimensional perovskite network to assist efficient and stable perovskite solar cells
17
作者 Jinwen Gu Xianggang Sun +5 位作者 Pok Fung Chan Xinhui Lu Peng Zeng Jue Gong Faming Li Mingzhen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期625-632,共8页
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of... The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability. 展开更多
关键词 Low-dimensional perovskite NETWORK Carrier transport Perovskite solar cell Stability
下载PDF
Efficient flexible dye-sensitized solar cells from rear illumination based on different morphologies of titanium dioxide photoanode
18
作者 Zhe He Gentian Yue +2 位作者 Yueyue Gao Chen Dong Furui Tan 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期67-73,共7页
The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar ... The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar cell(FDSSC).The influences of the morphology of TiO_(2) on the photovoltaic performances of FDSSCs were investigated.Under rear illumination of 100 mW·cm^(−2),the power conversion efficiencies of FDSSCs achieved 6.96%,7.36%,7.65%,and 7.83%with the TiO_(2) photoanodes of NPs,NWs,NRs,and NTs and PEDOT counter electrode.The FDSSCs based on TiO_(2) NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others.The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures,which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO_(2) nanoparticles and nanowires disordered structure. 展开更多
关键词 dye-sensitized solar cells PHOTOANODE TiO_(2) MORPHOLOGY
下载PDF
Minimizing interfacial energy losses in inverted perovskite solar cells by a dipolar stereochemical 2D perovskite interface
19
作者 Junjie Qian Jingjing He +10 位作者 Qihang Zhang Chenyue Zhu Shilin Chen Zhanpeng Wei Xuesong Leng Ziren Zhou Benben Shen Yu Peng Qiang Niu Shuang Yang Yu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期496-503,I0011,共9页
Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination... Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination losses at the n-type interface between the perovskite and fullerene has impeded further improvement of photovoltaic performance.Here,we modify the n-type interface of FAPbI_(3) perovskite films by constructing a stereochemical two-dimensional(2D) perovskite interlayer,in which the organic cations comprise both pyridine and ammonium groups.The pyridine N donor can create stable bonding with the surface-uncoordinated Pb on the perovskite,thereby passivating the shallow-level defects and enhancing the air stability of the film.Furthermore,the pyridine N donor also offers a positive polar interface to decrease the surface work function of the perovskite film,enabling n-type modification.Ultimately,we employ a p-i-n photovoltaic(PV) device with the positive dipole interlayer at perovskite/fullerene contact and achieve remarkable photoelectric conversion efficiency(PCE) of 22.0%. 展开更多
关键词 Perovskite solar cells Dipole interlayer STEREOCHEMISTRY Non-radiative recombination
下载PDF
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method
20
作者 陈兴谦 王燕 +6 位作者 陈伟 刘尧平 邢国光 冯博文 李昊臻 孙纵横 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期236-242,共7页
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text... Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells. 展开更多
关键词 V-groove alkaline etching quasi omnidirectionality silicon solar cell
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部