A method that could be used to detect the change of the environment was used to determine the input of trace elements from the atmospheric fallouts into the biosphere near Tomsk city (West Siberia, Russia) during the ...A method that could be used to detect the change of the environment was used to determine the input of trace elements from the atmospheric fallouts into the biosphere near Tomsk city (West Siberia, Russia) during the last century. In this study we used high-moor peat formations because of the wide-spread occurrence of bogs in this region. Investigations of the raised peat bogs in areas with different degree of anthropogenic impact showed that the distribution of trace elements in the upper parts of peat deposits depends on the location of bogs towards industrial sources. The highest concentrations of Ca, Fe, Cr, Co, Sc, Hf and rare earth elements were found in the upper part of the bog located near the city Tomsk. Distribution of trace elements in the vertical profiles of raised peat deposits near cities Tomsk and Seversk reflects the industrial specialization of these cities and the dynamic of the atmosphere pollution. Studies of radioactive elements (137Cs, 238Pu, 239Pu) have indicated their inputs from global fallouts.展开更多
Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit gr...Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves.展开更多
The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kin...The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kinneret inputs is lower than regional outsourcing. The Nitrogenic matter, mostly Nitrate migration from the Peat soil is significant. The implementation of efficient development is the key factor of Hula Land use. The financial beneficial success of the Hula land use is therefore dependent of Peat soil properties. The porosity of the Peat Soil is high and preferential pathway volume is low and Hydraulic Conductivity is therefore low. Consequently, the Mobile Spray Irrigation line was found as most suitable for cultivation in Peat Soil. Enhancement of Summer irrigation creating moisture elevation reduces Phosphorus migration from Peat Soil and is therefore recommended and recently implemented.展开更多
Peatlands are unique and complex natural ecosystems that are part of the most important carbon reservoirs on our planet, home to a diversity of microorganisms responsible for fermentation, humification or peat. The ai...Peatlands are unique and complex natural ecosystems that are part of the most important carbon reservoirs on our planet, home to a diversity of microorganisms responsible for fermentation, humification or peat. The aim is to understand chemical and biological indicators of peatland soils. This work aims to determine the physicochemical and bacteriological profile and lipolytic activity of soil bacteria in Bilanko peatlands. The bacterial profile with the production of lipases is carried out by classical microbiology techniques. The results show that the soils are moderately acidic with temperatures of 27.8˚C ± 0.01˚C for Bilanko and 27.1˚C ± 0.57˚C for Ngamakala. The electroconductivity (EC) varies from (9.52 ± 0.002) μS/cm to (39.01 ± 1.4) μS/cm with low turbidity of (2.04 ± 0.66) mg/L to (31.02 ± 0.84) mg/L and low ion concentrations with, however, a richness in phenolic compounds for Bilanko compared to Ngamakala. FMAT diversity ranged from (1.71 ± 0.88)∙104 UFC/g to (2.92 ± 0.07)∙105 UFC/g for Bilanko and (1.30 ± 0.73)∙104 UFC/g to (2.89 ± 0.06)∙104 UFC/g for Ngamakala. Bacillus loads ranged from (5.20 ± 1.40)∙103 CFU/g to (1.22 ± 0.13)∙104 CFU/g and from (1.11 ± 0.13)∙104 CFU/g to (9.20 ± 2.05)∙103 CFU/g;enterobacteria loads from (1.40 ± 0.76)∙103 CFU/g to (8.80 ± 1.73)∙103 CFU/g and from (1.01 ± 0.02)∙103 CFU/g to (9.20 ± 2.05)∙103 CFU/g;in Pseudomonas from 0 to (2.30 ± 0.53)∙102 CFU/g and from 0 to (8.90 ± 2.35)∙102 CFU/g for Bilanko and Ngamakala respectively. These results reveal a variation in bacterial similarity and distribution in the Bilanko and Ngamakala peat bogs.展开更多
Coal-type source rocks include both coal and terrigenous marine source rocks.By studying the distribution of secondary depressions,uplifts,as well as the characteristics of peat formation and accumulation in the north...Coal-type source rocks include both coal and terrigenous marine source rocks.By studying the distribution of secondary depressions,uplifts,as well as the characteristics of peat formation and accumulation in the northern marginal sea basin of the South China Sea,and combining them with coal formation characteristics observed in other basins,five genetic theories on the relationship between peat accumulation and dispersed organic matter accumulation are proposed.The northern marginal sea basin of the South China Sea is characterized by“disadvantageous coals formation and favorable terrigenous marine source rocks formation.”This paper provides a distribution map of coal seams and terrigenous marine source rocks in the Qiongdongnan Basin and determines their distribution patterns.Research shows that the migration of sedimentary facies in the basins and inner depressions led to the formation and migration of the peat accumulation centers.In addition,the vertical migration of the peat accumulation centers led to planar migration,which is actually a type of coupling relationship.Previous research results have revealed that the formation of coal-type source rock is multi-phased.The marginal sea basin is composed of several fault-depression basins,with each basin developing a second order of depression and uplift.There is no unified basin center or depositional center to be found.As a result,the concentration centers of coal-forming materials also vary greatly.Based on the distribution characteristics of coal-type source rocks in different basins within the marginal sea basins of the South China Sea,the research results have practical significance and provide guidance for exploring coal-type oil and gas reservoirs in this area.展开更多
Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-r...Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-resolution paleoclimate studies in the forest area.Grain size analysis was carried out on ombrotrophic peat profile in the eastern mountainous region of Jilin Province,Northeast China.The peat profile lasts the past 2000 a by four radiocarbon(AMS14C)ages.The results showed that the inorganic minerals in the peat profile are mainly silt,with some contribution from clay and a minor amount of sand,which are mainly due to wind dust and suspended transportation.Two paleoclimate stages are found in this peat profile by phytolith analysis,peat cellulose isotope research and historical documents:ca.45–1550 AD,relatively cold period;ca.1550 AD–present,relatively warm period.This finding is important for the initial study of paleoclimatic changes over the last 2000 a in the mountainous area of eastern mountainous area,Jilin Province,Northeast China.展开更多
A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTF...A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s...In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.展开更多
The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a ...The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organicmatter-removed and peat humus using the batch-equilibration procedure, and identified soilproperties that influenced DCD sorption. The sorption on peat humus was higher than that on thephaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed,indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathicproperty the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased fromabout 2 to 5, but a further increase in pH led to a rise in DCD sorption. The DCD desorptionhysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01mol L^(-1) CaCl_2 as the background electrolyte, suggesting that the hydrophobic domains of organicmatter may play an important role in DCD sorption.展开更多
In terms of macrolithotypes and microlithotypes, the petrographic composition was determined on column samples of Permian Seam 2 and Carboniferous Seam 9(2) from the Xingtai Coalfield, China. The macrolithotypes are c...In terms of macrolithotypes and microlithotypes, the petrographic composition was determined on column samples of Permian Seam 2 and Carboniferous Seam 9(2) from the Xingtai Coalfield, China. The macrolithotypes are classified into bright coal (B), banded bright coal (BB), banded coal (BC),banded dull coal (BD), dull coal (D) and fibrous coal (F). The lithotypes are dominated by BD and D in Seam 2, and BB in Seam 9(2).Microlithotypes are dominated by inertite and durite in Seam 2 and by vitrite in Seam 9(2). Eight microlithotypes were selected as indicators of peat-forming environments. Two triangle diagrams were drawn based on the indicators in order to explicate the peat-forming environments of Permian Seam 2 and Carboniferous Seam 9(2). The results indicate that the peat of Carboniferous Seam 9(2) was formed dominantly in wet swamps, whereas tbe peat of Permian Seam 2 formed dominantly in dry and wet swamps. These results are agree with the regional geology, that is, the peat of Carboniferous Seam 9(2) was formed in a transition zone and the peat of Permian Seam 2 formed in an upper delta zone.The climate of the peat-forming time for Permian Seam 2 was drier than that for Carboniferous.展开更多
Floating tephra was deposited together with ice core, snow layer, abyssal sediment, lake sediments, and other geological records. It is of great significance to interpret the impact on the climate change of volcanic e...Floating tephra was deposited together with ice core, snow layer, abyssal sediment, lake sediments, and other geological records. It is of great significance to interpret the impact on the climate change of volcanic eruptions from these geological records. It is the first time that volcanic glass was discovered from the peat of Jinchuan (金川) Maar, Jilin (吉林) Province, China. And it is in situ sediments from a near-source explosive eruption according to particle size analysis and identification results. The tephra were neither from Tianchi (天池) volcano eruptions, Changbai (长白) Mountain, nor from Jinlongdingzi (金龙顶子) volcano about 1 600 aBP eruption, but maybe from an unknown eruption of Longgang (龙岗) volcano group according to their geochemistry and distribution. Geochemical characters of the tephra are similar to those of Jinglongdingzi, which are poor in silica, deficient in alkali, Na2O content is more than K2O content, and are similar to distribution patterns of REE and incompatible elements, which helps to speculate that they originated from the same mantle magma with rare condemnation, and from basaltic explosive eruption of Longgang volcano group. The tephra, from peat with age proved that the eruption possibly happened in 15 BC-26 AD, is one of Longgang volcano group eruption that was not recorded and is earlier than that of Jinglongdingzi about 1 600 aBP eruption. And the sedimentary time of tephra is during the period of low temperature alteration, which may be the influence of eruption toward the local climate according to the correlativity of eruption to local temperature curve of peat cellulose oxygen isotope.展开更多
In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3%(36.9 million ha) of this area exist in Asia. Peats are classified based on thei...In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3%(36.9 million ha) of this area exist in Asia. Peats are classified based on their degree of decomposition, namely Fibrists, Hemists, Saprists and Folists. This makes them different in characteristics. The activities of microorganisms vary in different types of peat due to, for example, the sapric layer of well humified peat can provide water and food to microorganisms during heat stress. In another scenario, deeper peat is older and typically has lower levels of labile carbon to provide substrate for microbes compared to surface peat. A complete understanding of the microbial communities in different layers of peat is essential as microorganisms play major roles in peat decomposition and are important to ecosystem processes. These peats are a very important global carbon(C)store or reserve and could severely impact climate change if not managed well. Peatlands can store as much as 40 to 90 Gt C. Mis-management of peats could severely impact the environment particularly the emission of carbon into the atmosphere. For instance, clearing of peatlands using fire has been reported to release an estimated 88 t C ha^(-1) to the atmosphere. There are several factors which influence the environmental consequences of tropical peat especially in relation to climate change. The main influences are:(i) changes in temperature,(ii) changes in precipitation or rainfall,(iii) changes in atmospheric composition, and(iv) fire and haze. This paper is a brief review on these four influences in relation to climate change. It is apparent from the brief review that there is a need for continued short and long-term research to better understand tropical peats and how they affect our climate. This will hopefully provide the basis for predicting better what could happen under various scenarios.展开更多
文摘A method that could be used to detect the change of the environment was used to determine the input of trace elements from the atmospheric fallouts into the biosphere near Tomsk city (West Siberia, Russia) during the last century. In this study we used high-moor peat formations because of the wide-spread occurrence of bogs in this region. Investigations of the raised peat bogs in areas with different degree of anthropogenic impact showed that the distribution of trace elements in the upper parts of peat deposits depends on the location of bogs towards industrial sources. The highest concentrations of Ca, Fe, Cr, Co, Sc, Hf and rare earth elements were found in the upper part of the bog located near the city Tomsk. Distribution of trace elements in the vertical profiles of raised peat deposits near cities Tomsk and Seversk reflects the industrial specialization of these cities and the dynamic of the atmosphere pollution. Studies of radioactive elements (137Cs, 238Pu, 239Pu) have indicated their inputs from global fallouts.
基金This research was funded by the Ministry of Higher Education Malaysia via the Fundamental Research Grant Scheme(FRGS/1/2020/WAB03/UPM/02/1)。
文摘Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves.
文摘The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kinneret inputs is lower than regional outsourcing. The Nitrogenic matter, mostly Nitrate migration from the Peat soil is significant. The implementation of efficient development is the key factor of Hula Land use. The financial beneficial success of the Hula land use is therefore dependent of Peat soil properties. The porosity of the Peat Soil is high and preferential pathway volume is low and Hydraulic Conductivity is therefore low. Consequently, the Mobile Spray Irrigation line was found as most suitable for cultivation in Peat Soil. Enhancement of Summer irrigation creating moisture elevation reduces Phosphorus migration from Peat Soil and is therefore recommended and recently implemented.
文摘Peatlands are unique and complex natural ecosystems that are part of the most important carbon reservoirs on our planet, home to a diversity of microorganisms responsible for fermentation, humification or peat. The aim is to understand chemical and biological indicators of peatland soils. This work aims to determine the physicochemical and bacteriological profile and lipolytic activity of soil bacteria in Bilanko peatlands. The bacterial profile with the production of lipases is carried out by classical microbiology techniques. The results show that the soils are moderately acidic with temperatures of 27.8˚C ± 0.01˚C for Bilanko and 27.1˚C ± 0.57˚C for Ngamakala. The electroconductivity (EC) varies from (9.52 ± 0.002) μS/cm to (39.01 ± 1.4) μS/cm with low turbidity of (2.04 ± 0.66) mg/L to (31.02 ± 0.84) mg/L and low ion concentrations with, however, a richness in phenolic compounds for Bilanko compared to Ngamakala. FMAT diversity ranged from (1.71 ± 0.88)∙104 UFC/g to (2.92 ± 0.07)∙105 UFC/g for Bilanko and (1.30 ± 0.73)∙104 UFC/g to (2.89 ± 0.06)∙104 UFC/g for Ngamakala. Bacillus loads ranged from (5.20 ± 1.40)∙103 CFU/g to (1.22 ± 0.13)∙104 CFU/g and from (1.11 ± 0.13)∙104 CFU/g to (9.20 ± 2.05)∙103 CFU/g;enterobacteria loads from (1.40 ± 0.76)∙103 CFU/g to (8.80 ± 1.73)∙103 CFU/g and from (1.01 ± 0.02)∙103 CFU/g to (9.20 ± 2.05)∙103 CFU/g;in Pseudomonas from 0 to (2.30 ± 0.53)∙102 CFU/g and from 0 to (8.90 ± 2.35)∙102 CFU/g for Bilanko and Ngamakala respectively. These results reveal a variation in bacterial similarity and distribution in the Bilanko and Ngamakala peat bogs.
基金The National Natural Science Foundation of China under contract Nos 42072188,42272205 and 41872172。
文摘Coal-type source rocks include both coal and terrigenous marine source rocks.By studying the distribution of secondary depressions,uplifts,as well as the characteristics of peat formation and accumulation in the northern marginal sea basin of the South China Sea,and combining them with coal formation characteristics observed in other basins,five genetic theories on the relationship between peat accumulation and dispersed organic matter accumulation are proposed.The northern marginal sea basin of the South China Sea is characterized by“disadvantageous coals formation and favorable terrigenous marine source rocks formation.”This paper provides a distribution map of coal seams and terrigenous marine source rocks in the Qiongdongnan Basin and determines their distribution patterns.Research shows that the migration of sedimentary facies in the basins and inner depressions led to the formation and migration of the peat accumulation centers.In addition,the vertical migration of the peat accumulation centers led to planar migration,which is actually a type of coupling relationship.Previous research results have revealed that the formation of coal-type source rock is multi-phased.The marginal sea basin is composed of several fault-depression basins,with each basin developing a second order of depression and uplift.There is no unified basin center or depositional center to be found.As a result,the concentration centers of coal-forming materials also vary greatly.Based on the distribution characteristics of coal-type source rocks in different basins within the marginal sea basins of the South China Sea,the research results have practical significance and provide guidance for exploring coal-type oil and gas reservoirs in this area.
基金Supported by projects of National Natural Science Foundation of China(Nos.40702027,41472173)Ministry of Land and Resources Outstanding Youth Science and Technology Talent Training Program of China(No.201311111).
文摘Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-resolution paleoclimate studies in the forest area.Grain size analysis was carried out on ombrotrophic peat profile in the eastern mountainous region of Jilin Province,Northeast China.The peat profile lasts the past 2000 a by four radiocarbon(AMS14C)ages.The results showed that the inorganic minerals in the peat profile are mainly silt,with some contribution from clay and a minor amount of sand,which are mainly due to wind dust and suspended transportation.Two paleoclimate stages are found in this peat profile by phytolith analysis,peat cellulose isotope research and historical documents:ca.45–1550 AD,relatively cold period;ca.1550 AD–present,relatively warm period.This finding is important for the initial study of paleoclimatic changes over the last 2000 a in the mountainous area of eastern mountainous area,Jilin Province,Northeast China.
文摘A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADC4B17 and 2006 BAD16B09)the Beijing Key Discipline Construction Project of Biomass Engineering Interdisciplinary
文摘In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2004AA246020) the National Natural Science Foundation for Distinguished Young Scholars, China(No. 20225722).
文摘The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organicmatter-removed and peat humus using the batch-equilibration procedure, and identified soilproperties that influenced DCD sorption. The sorption on peat humus was higher than that on thephaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed,indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathicproperty the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased fromabout 2 to 5, but a further increase in pH led to a rise in DCD sorption. The DCD desorptionhysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01mol L^(-1) CaCl_2 as the background electrolyte, suggesting that the hydrophobic domains of organicmatter may play an important role in DCD sorption.
文摘In terms of macrolithotypes and microlithotypes, the petrographic composition was determined on column samples of Permian Seam 2 and Carboniferous Seam 9(2) from the Xingtai Coalfield, China. The macrolithotypes are classified into bright coal (B), banded bright coal (BB), banded coal (BC),banded dull coal (BD), dull coal (D) and fibrous coal (F). The lithotypes are dominated by BD and D in Seam 2, and BB in Seam 9(2).Microlithotypes are dominated by inertite and durite in Seam 2 and by vitrite in Seam 9(2). Eight microlithotypes were selected as indicators of peat-forming environments. Two triangle diagrams were drawn based on the indicators in order to explicate the peat-forming environments of Permian Seam 2 and Carboniferous Seam 9(2). The results indicate that the peat of Carboniferous Seam 9(2) was formed dominantly in wet swamps, whereas tbe peat of Permian Seam 2 formed dominantly in dry and wet swamps. These results are agree with the regional geology, that is, the peat of Carboniferous Seam 9(2) was formed in a transition zone and the peat of Permian Seam 2 formed in an upper delta zone.The climate of the peat-forming time for Permian Seam 2 was drier than that for Carboniferous.
基金the National Natural Science Foundation of China (Nos. 40231007, 40602031)the Open Research Foundation of the State Key Laboratory of Environmental Geochemistry,Chinese Academy of Sciences (SKEGL2003010)
文摘Floating tephra was deposited together with ice core, snow layer, abyssal sediment, lake sediments, and other geological records. It is of great significance to interpret the impact on the climate change of volcanic eruptions from these geological records. It is the first time that volcanic glass was discovered from the peat of Jinchuan (金川) Maar, Jilin (吉林) Province, China. And it is in situ sediments from a near-source explosive eruption according to particle size analysis and identification results. The tephra were neither from Tianchi (天池) volcano eruptions, Changbai (长白) Mountain, nor from Jinlongdingzi (金龙顶子) volcano about 1 600 aBP eruption, but maybe from an unknown eruption of Longgang (龙岗) volcano group according to their geochemistry and distribution. Geochemical characters of the tephra are similar to those of Jinglongdingzi, which are poor in silica, deficient in alkali, Na2O content is more than K2O content, and are similar to distribution patterns of REE and incompatible elements, which helps to speculate that they originated from the same mantle magma with rare condemnation, and from basaltic explosive eruption of Longgang volcano group. The tephra, from peat with age proved that the eruption possibly happened in 15 BC-26 AD, is one of Longgang volcano group eruption that was not recorded and is earlier than that of Jinglongdingzi about 1 600 aBP eruption. And the sedimentary time of tephra is during the period of low temperature alteration, which may be the influence of eruption toward the local climate according to the correlativity of eruption to local temperature curve of peat cellulose oxygen isotope.
基金Universiti Putra Malaysia, Universiti Malaysia Perlis, and Ministry of Higher Education Malaysia for the continued support in our research work related to peats through Putra Grant (9439100)Fundamental Research Grant Scheme (5524983)
文摘In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3%(36.9 million ha) of this area exist in Asia. Peats are classified based on their degree of decomposition, namely Fibrists, Hemists, Saprists and Folists. This makes them different in characteristics. The activities of microorganisms vary in different types of peat due to, for example, the sapric layer of well humified peat can provide water and food to microorganisms during heat stress. In another scenario, deeper peat is older and typically has lower levels of labile carbon to provide substrate for microbes compared to surface peat. A complete understanding of the microbial communities in different layers of peat is essential as microorganisms play major roles in peat decomposition and are important to ecosystem processes. These peats are a very important global carbon(C)store or reserve and could severely impact climate change if not managed well. Peatlands can store as much as 40 to 90 Gt C. Mis-management of peats could severely impact the environment particularly the emission of carbon into the atmosphere. For instance, clearing of peatlands using fire has been reported to release an estimated 88 t C ha^(-1) to the atmosphere. There are several factors which influence the environmental consequences of tropical peat especially in relation to climate change. The main influences are:(i) changes in temperature,(ii) changes in precipitation or rainfall,(iii) changes in atmospheric composition, and(iv) fire and haze. This paper is a brief review on these four influences in relation to climate change. It is apparent from the brief review that there is a need for continued short and long-term research to better understand tropical peats and how they affect our climate. This will hopefully provide the basis for predicting better what could happen under various scenarios.