To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo...To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.展开更多
The evolution of microstructure and microhardness was studied in a commercial tungsten-25%rhenium(mass fraction)(W-25Re)alloy processed by the high pressure torsion(HPT)procedure under a pressure of7.7GPa up to10revol...The evolution of microstructure and microhardness was studied in a commercial tungsten-25%rhenium(mass fraction)(W-25Re)alloy processed by the high pressure torsion(HPT)procedure under a pressure of7.7GPa up to10revolutions at different temperatures.The results show that the samples processed by10revolutions at room temperature could have the smallest grain size at around0.209μm.High saturation hardness(HV^1200)could be achieved after the rapid strengthening stage for samples processed by10revolutions both at room temperature and at573K.Microstructural observation and analysis from Hall-Patch relationship could reveal that grain refinement and grain boundaries strengthening are the main factors of hardening mechanism in W-25Re alloy.It is also demonstrated that sintered W-25Re sample may have brittle phase separation phenomenon after HPT processing.展开更多
Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechan...Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.展开更多
The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filame...The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filaments.The arrangements of the niobium filaments in the bronze matrix and their size have regular geometry.This allows us to monitor and measure the displacement of the niobium filaments in the sample volume,which results from HTP.The bronze/niobium composite samples were subjected to HPT at room temperature and 6 GPa,and the number of revolutions N=1/4,1/2,1,2,3 and 5.It was shown that HPT with revolution number of 1 leads to the 360° rotation of entire sample volume without sample slippage.Similar deformational behavior during HPT can be expected for high-ductility metallic materials.The increase in the number of revolutions more than 2 leads to twisting the niobium filaments in the sample volume and the formation of 'vortex' multilayer structure.The mechanisms for the formation of such structures were discussed.展开更多
The Mg–Zn–Gd alloy with quasicrystal icosahedral phase was processed by high-pressure torsion (HPT). The effect of bimodal I-phase on the dynamic recrystallization was analyzed by transmission electron microscopy. T...The Mg–Zn–Gd alloy with quasicrystal icosahedral phase was processed by high-pressure torsion (HPT). The effect of bimodal I-phase on the dynamic recrystallization was analyzed by transmission electron microscopy. The results showed that the block I-phase can stimulate obvious particle-stimulated nucleation and dynamic recrystallization (DRX) grains were preferentially formed after HPT for 5 turns, while the granular I-phase only promoted the generation of sub-grains. The orientation relationship was determined as twofold//[1210] and fivefold//(0002)_(Mg). Moreover, after HPT for 9 turns, the DRX grains induced by block I-phase appeared to grow up and coarsened. Compared with block I-phase, the grains induced by granular I-phase presented much smaller size and distributed more homogeneous due to the strong pinning effect.展开更多
The effect of revolution on inhomogeneous plastic deformation of HPT processed IF steel was investigated using experimental and simulation approaches. The results indicate that the degree of inhomogeneous plastic defo...The effect of revolution on inhomogeneous plastic deformation of HPT processed IF steel was investigated using experimental and simulation approaches. The results indicate that the degree of inhomogeneous plastic deformation increases as the revolutions increase along the radial direction on the transversal plane of disks. In addition, the hardness and the microstructure distributions verify the trend that the effective strain of the HPT processed disks at the early torsion stage is gradually deformed from the edge to the center with the revolutions increases.展开更多
The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT pro...The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.展开更多
In recent years,high-entropy alloys(HEAs) have developed a lot as the new style of materials,which have become a research focus in the materials fields.It breaks the normal procedure of traditional alloy design(based ...In recent years,high-entropy alloys(HEAs) have developed a lot as the new style of materials,which have become a research focus in the materials fields.It breaks the normal procedure of traditional alloy design(based on one/two elements as the main component,and adds some other elements to improve the micro structure and required related performance of the alloy),and consists of five or more equal or nearly equal elements,with multiple principal elements.Therefore,HEAs have many excellent mechanical properties compared with traditional alloys,which have aroused great research interest of researchers.The rapid development of high-pressure technology makes it a powerful tool to modulate the structures of HEAs,and brings new chance for the study and optimization of mechanical properties of HEAs.In this paper,the application of high-pressure technology in exploring and improving the mechanical properties of HEAs is reviewed,which could deepen the understanding of high-pressure technology and provide a new avenue for further exploration of HEAs’ mechanical properties.展开更多
Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness ...Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness variation were investigated.For the samples after HPT processing at RT,the grain size reduced from 43 μm to 265 nm,and the Vickers microhardness increased from HV52 to HV140.However,for the samples after HPT processing at LNT,the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region.Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample,but further deformation induced an inhomogeneous distribution of grain sizes,with submicrometer-sized grains embedded inside micrometer-sized grains.The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature.On the contrary,the micrometer-sized grains were nearly free of dislocation,without obvious deformation trace remaining in them.These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.展开更多
High-pressure torsion(HPT)processing under a pressure of 6.0 GPa was applied to Ti29.7Ni50.3Hf20(at.%)alloy.Two types of structure were observed after HPT with 3 revolutions:first one is the mixture of amorphous phase...High-pressure torsion(HPT)processing under a pressure of 6.0 GPa was applied to Ti29.7Ni50.3Hf20(at.%)alloy.Two types of structure were observed after HPT with 3 revolutions:first one is the mixture of amorphous phase and retained nanocrystalline;second is the alternating bands of amorphous phase and high defect density crystalline.As a result,post deformation annealing(PDA)at 500-700℃leads to the non-uniform distribution of martensite and parent phase grains.The grains of martensite are twice larger compared to that of parent phase.The nanocrystalline and ultrafine grains form after annealing at 500-600℃and 700℃,respectively.The twinning mechanism does not change with the reduction of martensitic grains up to^35 nm.The relationship between strength and grain size in Ti29.7Ni50.3Hf20 alloy obeys the classical Hall-Petch relationship with a coefficient of 10.80±0.39 GPa nm^1/2.展开更多
The wear characteristics of Cu and Cu-SiC composite microsize powders consolidated by cold compaction combined with sintering or high-pressure torsion(HPT)were investigated.The HPT processed(HPTed)samples with b...The wear characteristics of Cu and Cu-SiC composite microsize powders consolidated by cold compaction combined with sintering or high-pressure torsion(HPT)were investigated.The HPT processed(HPTed)samples with bimodal and trimodal microstructures and fine Cu grains and SiC particle sizes have superior hardness,reasonable ductility level,and high wear resistance.The wear mass loss and coefficient of friction of HPTed samples were remarkably lower than that of cold-compacted and sintered samples as well as that of micro and nano Cu and Cu-SiC composites from previous studies.The sample fabrication method has an apparent influence on the wear mechanism.The wear mechanism was converted from adhesive,delamination,three-body mechanism,grooves(take off the SiC particles),and cracks into abrasive wear after HPT.Oxidization can be considered a dominant wear mechanism in all cases.The worn surface morphology and analysis support the relationship between wear mechanism and characteristics.展开更多
基金Funded by the National Natural Science Foundation of China(No.51905215)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1233)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province of China(No.2019JZZY020111)the National College Students Innovation and Entrepreneurship Training Program of China(No.CX2022415)。
文摘To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.
基金Project(11402264)supported by the National Natural Science Foundation of ChinaProject(BK20160182)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(JUSRP116027,JUSRP51732B)supported by the Fundamental Research Funds from Jiangnan University,China
文摘The evolution of microstructure and microhardness was studied in a commercial tungsten-25%rhenium(mass fraction)(W-25Re)alloy processed by the high pressure torsion(HPT)procedure under a pressure of7.7GPa up to10revolutions at different temperatures.The results show that the samples processed by10revolutions at room temperature could have the smallest grain size at around0.209μm.High saturation hardness(HV^1200)could be achieved after the rapid strengthening stage for samples processed by10revolutions both at room temperature and at573K.Microstructural observation and analysis from Hall-Patch relationship could reveal that grain refinement and grain boundaries strengthening are the main factors of hardening mechanism in W-25Re alloy.It is also demonstrated that sintered W-25Re sample may have brittle phase separation phenomenon after HPT processing.
基金sponsored by the National Natural Science Foundation of China ( 51571150,11572222)Tianjin Natural Science Foundation ( 14JCYBJC16900)
文摘Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.
基金financial support from the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISi S” (No. K2-2019-008)
文摘The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filaments.The arrangements of the niobium filaments in the bronze matrix and their size have regular geometry.This allows us to monitor and measure the displacement of the niobium filaments in the sample volume,which results from HTP.The bronze/niobium composite samples were subjected to HPT at room temperature and 6 GPa,and the number of revolutions N=1/4,1/2,1,2,3 and 5.It was shown that HPT with revolution number of 1 leads to the 360° rotation of entire sample volume without sample slippage.Similar deformational behavior during HPT can be expected for high-ductility metallic materials.The increase in the number of revolutions more than 2 leads to twisting the niobium filaments in the sample volume and the formation of 'vortex' multilayer structure.The mechanisms for the formation of such structures were discussed.
基金support from the National Natural Science Foundation of China(Grant Nos.51975175 and 52375329)the Projects of Natural Science Key Research of Anhui Province(2023AH051664).
文摘The Mg–Zn–Gd alloy with quasicrystal icosahedral phase was processed by high-pressure torsion (HPT). The effect of bimodal I-phase on the dynamic recrystallization was analyzed by transmission electron microscopy. The results showed that the block I-phase can stimulate obvious particle-stimulated nucleation and dynamic recrystallization (DRX) grains were preferentially formed after HPT for 5 turns, while the granular I-phase only promoted the generation of sub-grains. The orientation relationship was determined as twofold//[1210] and fivefold//(0002)_(Mg). Moreover, after HPT for 9 turns, the DRX grains induced by block I-phase appeared to grow up and coarsened. Compared with block I-phase, the grains induced by granular I-phase presented much smaller size and distributed more homogeneous due to the strong pinning effect.
文摘The effect of revolution on inhomogeneous plastic deformation of HPT processed IF steel was investigated using experimental and simulation approaches. The results indicate that the degree of inhomogeneous plastic deformation increases as the revolutions increase along the radial direction on the transversal plane of disks. In addition, the hardness and the microstructure distributions verify the trend that the effective strain of the HPT processed disks at the early torsion stage is gradually deformed from the edge to the center with the revolutions increases.
文摘The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62104090, 11604133, and 11874174)the Natural Science Foundation of Shandong Province(Grant Nos. ZR2017QA013, ZR2021QA087, and ZR2021QA092 )+3 种基金the Science and Technology Plan of Youth Innovation Team for Universities of Shandong Province (Grant No. 2019KJJ019)the Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province, Fundamental Research Funds for the Central Universities (buctrc 202122)the Research Funding of Liaocheng University (318012016, 318051610, and 318051612)the Special Construction Project Fund for Shandong Province Taishan Scholars。
文摘In recent years,high-entropy alloys(HEAs) have developed a lot as the new style of materials,which have become a research focus in the materials fields.It breaks the normal procedure of traditional alloy design(based on one/two elements as the main component,and adds some other elements to improve the micro structure and required related performance of the alloy),and consists of five or more equal or nearly equal elements,with multiple principal elements.Therefore,HEAs have many excellent mechanical properties compared with traditional alloys,which have aroused great research interest of researchers.The rapid development of high-pressure technology makes it a powerful tool to modulate the structures of HEAs,and brings new chance for the study and optimization of mechanical properties of HEAs.In this paper,the application of high-pressure technology in exploring and improving the mechanical properties of HEAs is reviewed,which could deepen the understanding of high-pressure technology and provide a new avenue for further exploration of HEAs’ mechanical properties.
基金supported by the National Natural Science Foundation of China (Grant Nos.10721202,10772178,50571110)
文摘Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness variation were investigated.For the samples after HPT processing at RT,the grain size reduced from 43 μm to 265 nm,and the Vickers microhardness increased from HV52 to HV140.However,for the samples after HPT processing at LNT,the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region.Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample,but further deformation induced an inhomogeneous distribution of grain sizes,with submicrometer-sized grains embedded inside micrometer-sized grains.The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature.On the contrary,the micrometer-sized grains were nearly free of dislocation,without obvious deformation trace remaining in them.These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.
基金supported by National Key R&D Program of China[grant number 2017YFE0123500]National Natural Science Foundation of China[grant number 51971072,51671064]+2 种基金the Fundamental Research Funds for the Central University[grant number HEUCFG201836]the support from the RFBR-CNPq-DST research project№19-58-80018the support in part from the Russian Foundation for Basic Research(project No.20-03-00614)。
文摘High-pressure torsion(HPT)processing under a pressure of 6.0 GPa was applied to Ti29.7Ni50.3Hf20(at.%)alloy.Two types of structure were observed after HPT with 3 revolutions:first one is the mixture of amorphous phase and retained nanocrystalline;second is the alternating bands of amorphous phase and high defect density crystalline.As a result,post deformation annealing(PDA)at 500-700℃leads to the non-uniform distribution of martensite and parent phase grains.The grains of martensite are twice larger compared to that of parent phase.The nanocrystalline and ultrafine grains form after annealing at 500-600℃and 700℃,respectively.The twinning mechanism does not change with the reduction of martensitic grains up to^35 nm.The relationship between strength and grain size in Ti29.7Ni50.3Hf20 alloy obeys the classical Hall-Petch relationship with a coefficient of 10.80±0.39 GPa nm^1/2.
文摘The wear characteristics of Cu and Cu-SiC composite microsize powders consolidated by cold compaction combined with sintering or high-pressure torsion(HPT)were investigated.The HPT processed(HPTed)samples with bimodal and trimodal microstructures and fine Cu grains and SiC particle sizes have superior hardness,reasonable ductility level,and high wear resistance.The wear mass loss and coefficient of friction of HPTed samples were remarkably lower than that of cold-compacted and sintered samples as well as that of micro and nano Cu and Cu-SiC composites from previous studies.The sample fabrication method has an apparent influence on the wear mechanism.The wear mechanism was converted from adhesive,delamination,three-body mechanism,grooves(take off the SiC particles),and cracks into abrasive wear after HPT.Oxidization can be considered a dominant wear mechanism in all cases.The worn surface morphology and analysis support the relationship between wear mechanism and characteristics.