To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con...To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.展开更多
The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the ge...The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the genetic algorithm (GA) is investigated. Its calculation speed is faster than that of traditional optimization methods, and it is suitable for the machining parameter optimization in the automatic manufacturing system. Based on the theoretical studies, a system of machining parameter management and optimization is developed. The system can improve productivity of the high-speed machining centers.展开更多
Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo...Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-pa...Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.展开更多
Excellent surface integrity is an eternal pursuit in high performance manufacturing,with microstructure being a crucial component of the surface integrity dataset and a key factor controlling surface properties such a...Excellent surface integrity is an eternal pursuit in high performance manufacturing,with microstructure being a crucial component of the surface integrity dataset and a key factor controlling surface properties such as fatigue and creep.The multi-physical fields generated by thermomechanical loads during high-speed machining act on the processed surface layer,influencing the evolution of microstructures.To investigate the microstructural evolution mechanisms of ATI718 plus during high-speed machining,cutting experiments and techniques such as Electron back scatter diffraction(EBSD),Transmission Kikuchi diffraction(TKD),and Precession electron diffraction(PED)is conducted to quantitatively analyze the microstructures in the chip shear zone and the machined surface.Subsequently,a combined finite element(FE)and cellular automata(CA)model is developed to simulate the microstructure evolution during the cutting process.The discontinuous dynamic recrystallization(DDRX)mechanism is employed to demonstrate the nucleation and growth of grains under the influence of multiple physical fields.The simulation and experimental results show similar dynamic recrystallization(DRX)grain sizes,indicating acceptable accuracy of the CA model in terms of DRX grain size.The comparison between experimental and simulation results confirms the occurrence of both continuous dynamic recrystallization(CDRX)and DDRX during the cutting process.The synergistic competition between CDRX induced grain lamellar refinement and DDRX induced grain growth emerge as the primary mechanism driving microstructural evolution.A layer of ultrafine grains,with a thickness within 20 lm,is formed on the machined surface.Results under different parameters demonstrate that the temperature has a more significant impact on the thickness of the ultrafine grain layer and the diameter of grains within the layer compared to the strain rate.展开更多
Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple abou...Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.展开更多
Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining...Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics simulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dislocations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of defo rmation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.展开更多
Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology featu...Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.展开更多
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional...In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.展开更多
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u...A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo...Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.展开更多
In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,...In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused.展开更多
Gears are important mechanical parts for transmitting power and play an increasingly important role in the machinery industry.The electric vehicle industry developed rapidly and became a vital development field of the...Gears are important mechanical parts for transmitting power and play an increasingly important role in the machinery industry.The electric vehicle industry developed rapidly and became a vital development field of the automotive industry over the past few years.The conversion of energy increases the requirements for electric vehicle transmissions,which promotes the development of high-speed and low-noise transmission gear.This paper elaborates on the research progress of high-speed and low-noise gear finishing methods.Firstly,this review analyses the machining requirements,finishing,and specific machining technologies of high-speed and low-noise gears.The importance of gear grinding and honing in high-speed and low-noise gear machining is highlighted.Secondly,the applications of gear grinding and honing in gear modification,error compensation,and texture control are analyzed.Furthermore,the role of precision machining technology in improving gear performance is clarified.Finally,the design and processing methods of the modified tooth flank for gear modification are summarized.In addition,the influence of tooth surface texture on noise is described,and the texture change methods are explored.The well-known open problems of gear finishing are finally identified,and some new research interests are also pointed out.This review will provide valuable references for further research on gear finishing.展开更多
基金Sponsored by the National Excellent Young Teacher Encouragement Plan of China
文摘To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.
文摘The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the genetic algorithm (GA) is investigated. Its calculation speed is faster than that of traditional optimization methods, and it is suitable for the machining parameter optimization in the automatic manufacturing system. Based on the theoretical studies, a system of machining parameter management and optimization is developed. The system can improve productivity of the high-speed machining centers.
文摘Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575087,51205041)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金Basic Research Foundation of Key Laboratory of Liaoning Educational Committee,China(Grant No.LZ2014003)Research Project of Ministry of Education of China(Grant No.113018A)
文摘Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.
基金supported by National Natural Science Foundation of China(Nos.92160301,92360309)Science Center for Gas Turbine Project(Grant No.P2022-AB-Ⅳ-001-002)+1 种基金Shaanxi Provincial Key Research and Development Program(No.2021ZDLGY10-06)Innovation Capability Support Program of Shaanxi(Program No.2022TD-60).
文摘Excellent surface integrity is an eternal pursuit in high performance manufacturing,with microstructure being a crucial component of the surface integrity dataset and a key factor controlling surface properties such as fatigue and creep.The multi-physical fields generated by thermomechanical loads during high-speed machining act on the processed surface layer,influencing the evolution of microstructures.To investigate the microstructural evolution mechanisms of ATI718 plus during high-speed machining,cutting experiments and techniques such as Electron back scatter diffraction(EBSD),Transmission Kikuchi diffraction(TKD),and Precession electron diffraction(PED)is conducted to quantitatively analyze the microstructures in the chip shear zone and the machined surface.Subsequently,a combined finite element(FE)and cellular automata(CA)model is developed to simulate the microstructure evolution during the cutting process.The discontinuous dynamic recrystallization(DDRX)mechanism is employed to demonstrate the nucleation and growth of grains under the influence of multiple physical fields.The simulation and experimental results show similar dynamic recrystallization(DRX)grain sizes,indicating acceptable accuracy of the CA model in terms of DRX grain size.The comparison between experimental and simulation results confirms the occurrence of both continuous dynamic recrystallization(CDRX)and DDRX during the cutting process.The synergistic competition between CDRX induced grain lamellar refinement and DDRX induced grain growth emerge as the primary mechanism driving microstructural evolution.A layer of ultrafine grains,with a thickness within 20 lm,is formed on the machined surface.Results under different parameters demonstrate that the temperature has a more significant impact on the thickness of the ultrafine grain layer and the diameter of grains within the layer compared to the strain rate.
文摘Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.
基金financially supported by the National Natural Science Foundation of China(Nos.51701171 and 51971187)the Partner State Key Laboratories in Hong Kong from the Innovation and Technology Commission(ITC)of the Government of the Hong Kong Special Administration Region(HKASR),Chinafinancial support from the PolyU Research Office(Project Code:1-BBXA)。
文摘Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit superior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics simulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dislocations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of defo rmation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975112 and 51575289)。
文摘Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.
文摘In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.
文摘A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金supported by the National Natural Science Foundation of China[U2268217].
文摘Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.
基金The authors'team acknowledges the continuous and invaluable support from the Natural Science Foundation of China under the grants of 51577165,51690182,51377140,and 51077116.
文摘In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275483,52075142,and U22B2084)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2023HGPA0292).
文摘Gears are important mechanical parts for transmitting power and play an increasingly important role in the machinery industry.The electric vehicle industry developed rapidly and became a vital development field of the automotive industry over the past few years.The conversion of energy increases the requirements for electric vehicle transmissions,which promotes the development of high-speed and low-noise transmission gear.This paper elaborates on the research progress of high-speed and low-noise gear finishing methods.Firstly,this review analyses the machining requirements,finishing,and specific machining technologies of high-speed and low-noise gears.The importance of gear grinding and honing in high-speed and low-noise gear machining is highlighted.Secondly,the applications of gear grinding and honing in gear modification,error compensation,and texture control are analyzed.Furthermore,the role of precision machining technology in improving gear performance is clarified.Finally,the design and processing methods of the modified tooth flank for gear modification are summarized.In addition,the influence of tooth surface texture on noise is described,and the texture change methods are explored.The well-known open problems of gear finishing are finally identified,and some new research interests are also pointed out.This review will provide valuable references for further research on gear finishing.