期刊文献+
共找到205,972篇文章
< 1 2 250 >
每页显示 20 50 100
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
1
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 Flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
下载PDF
Theory and practice for assessing structural integrity and dynamical integrity of high-speed trains
2
作者 Weihua Zhang Yuanchen Zeng +1 位作者 Dongli Song Zhiwei Wang 《Railway Sciences》 2024年第2期113-127,共15页
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass... Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains. 展开更多
关键词 Structural integrity Dynamical integrity Vehicle system dynamics high-speed trains BOGIE Integrity assessment FATIGUE
下载PDF
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
3
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 high-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability
4
作者 Heng Zhang Liang Ling +1 位作者 Sebastian Stichel Wanming Zhai 《Railway Engineering Science》 EI 2024年第3期324-343,共20页
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ... Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated. 展开更多
关键词 high-speed train Hunting stability Bio-inspired limb-like structure Motor suspension Nonlinear damping
下载PDF
Attack-Resilient Distributed Cooperative Control of Virtually Coupled High-Speed Trains via Topology Reconfiguration
5
作者 Shunyuan Xiao Xiaohua Ge Qing Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1066-1068,共3页
Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed co... Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity. 展开更多
关键词 PRESCRIBED Speed trains
下载PDF
Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains
6
作者 Xiang Kan Yan Li +1 位作者 Tian Li Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1075-1091,共17页
A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effect... A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved. 展开更多
关键词 PANTOGRAPH FAIRING train aerodynamic numerical simulation
下载PDF
Vibration-based bearing fault diagnosis of high-speed trains:A literature review 被引量:2
7
作者 Wanchun Hu Ge Xin +4 位作者 Jiayi Wu Guoping An Yilei Li Ke Feng Jerome Antoni 《High-Speed Railway》 2023年第4期219-223,共5页
Due to the advantages of comfort and safety,high-speed trains are gradually becoming the mainstream public transport in China.Since the operating speed and mileage of high-speed trains have achieved rapid growth,it is... Due to the advantages of comfort and safety,high-speed trains are gradually becoming the mainstream public transport in China.Since the operating speed and mileage of high-speed trains have achieved rapid growth,it is more and more urgent to ensure their reliability and safety.As an important component in the bogies of highspeed trains,the health state of the bearing directly affects the operational safety of the trains.It is therefore necessary to diagnoze the faults of bearings in the bogies of high-speed trains as early as possible.In this paper,the bearing fault diagnostic methods for high-speed trains have been systematically summarized with their challenges and perspectives.First,it briefly introduces the structure of bearings in the bogies as well as the fault characteristic frequencies.Then,a brief review of the research on vibration-based signal processing methods and machine learning methods has been provided.Finally,the challenges and future developments of vibrationbased bearing fault diagnostic methods for high-speed trains have been analyzed. 展开更多
关键词 high-speed trains Machinery fault diagnosis Bogies Bearings
下载PDF
Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances
8
作者 王千龄 马彩青 林雪 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期383-391,共9页
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau... The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results. 展开更多
关键词 fault-tolerant control high-speed trains disturbance observer fuzzy logic
下载PDF
Study on the operational safety of high-speed trains exposed to stochastic winds 被引量:11
9
作者 Meng-Ge Yu Ji-Ye Zhang +1 位作者 Ke-Yue Zhang Wei-Hua Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期351-360,共10页
The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line betwe... The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds. 展开更多
关键词 high-speed trains Stochastic winds Unsteadyaerodynamic forces Mean characteristic wind curve
下载PDF
Control method of unfavorable speed interval for high-speed trains 被引量:1
10
作者 Lindong WANG Qiang HUANG +1 位作者 Yuqing ZENG Fengtao LIN 《Journal of Modern Transportation》 2012年第3期153-159,共7页
In tests on dynamic performance of high-speed trains, it is found that there is an unfavorable speed interval for some vehicles, which would he harmful to the daily operation of the vehicle. By analyzing the relations... In tests on dynamic performance of high-speed trains, it is found that there is an unfavorable speed interval for some vehicles, which would he harmful to the daily operation of the vehicle. By analyzing the relationship of vibration frequencies of the vehicle and its running speed, this paper finds that the unfavorable speed interval is caused by the vibration superposition of the natural frequency of the vehicle system with the frequency of external excitation. Taking some electric multiple units (EMUs) as examples, we proposed an approach to obtaining the unfavorable speed interval of vehicles. By analyzing the relation between vibration frequencies and the running speed of the vehicle, the natural frequencies of the vehicle system and the external excitations are distinguished. In the end, we suggest some measures to minimize the negative influences of the unfavorable speed interval, such as shifting frequency, reducing or eliminating external excitation. 展开更多
关键词 high-speed trains unfavorable speed interval dynamic performance
下载PDF
Wear characteristics and prediction of wheel profiles in high-speed trains
11
作者 韩鹏 张卫华 李艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3232-3238,共7页
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p... Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances. 展开更多
关键词 high-speed trains wheel wear wear characteristics wear prediction vehicle system dynamics
下载PDF
Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains 被引量:15
12
作者 Ning Zhu Shou-Guang Sun +1 位作者 Qiang Li Hua Zou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期901-909,共9页
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-sta... One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains.The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames.Moreover,a force-measuring frame is designed and manufactured based on the quasi-static load series.The load decoupling model of the quasi-static load series is then established via calibration tests.Quasi-static load–time histories,together with online tests and decoupling analysis,are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line.The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm.The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames. 展开更多
关键词 Load spectra QUASI-STATIC Bogie frame CALIBRATION high-speed train
下载PDF
Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind 被引量:18
13
作者 刘堂红 张洁 《Journal of Central South University》 SCIE EI CAS 2013年第3期830-836,共7页
The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e... The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another. 展开更多
关键词 high-speed train cross wind special landform aerodynamic performance
下载PDF
An improved algorithm for fluid-structure interaction of high-speed trains under crosswind 被引量:30
14
作者 Tian LI Jiye ZHANG Weihua ZHANG 《Journal of Modern Transportation》 2011年第2期75-81,共7页
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ... Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains. 展开更多
关键词 high-speed train fluid-structure interaction CROSSWIND AERODYNAMICS relaxation factor
下载PDF
Development of a simulation model for dynamic derailment analysis of high-speed trains 被引量:8
15
作者 Liang Ling Xin-Biao Xiao Xue-Song Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期860-875,共16页
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the dera... The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations. 展开更多
关键词 high-speed railway high-speed train DERAILMENT train–track dynamics Track buckling Numerical simulation
下载PDF
Numerical and experimental investigation on snow accumulation on bogies of high-speed trains 被引量:7
16
作者 GAO Guang-jun ZHANG Yan WANG Jia-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1039-1053,共15页
This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra... This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint. 展开更多
关键词 high-speed train snow issue bogies numerical simulation EXPERIMENT
下载PDF
Influence of pantograph fixing position on aerodynamic characteristics of high-speed trains 被引量:8
17
作者 Liang Zhang Jiye Zhang +1 位作者 Tian Li Weihua Zhang 《Journal of Modern Transportation》 2017年第1期34-39,共6页
To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- pu... To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- putational fluid dynamics, and eight cases with pantographs fixed on different positions and in different operational orientations were considered. The pantographs were fixed on the front or the rear end of the first middle car or fixed on the front or the rear end of the last middle car. The external flow fields of the high-speed trains were numeri- cally simulated using the software STAR-CCM+. The results show that the pantograph fixing position has little effect on the aerodynamic drag force of the head car and has a large effect on the aerodynamic drag force of the tail car. The influences of the pantograph fixing position on the aerodynamic lift forces of the head car, tail car and pan- tographs are obvious. Among the eight cases, considering the total aerodynamic drag force of the train and the aerodynamic lift force of the lifted pantograph, when the pantographs are fixed on the rear end of the last middle car and the lifted pantograph is in the knuckle-upstream ori- entation, the aerodynamic performance of the high-speed train is the best. 展开更多
关键词 high-speed train PANTOGRAPH Fixing position Aerodynamic characteristics Computational fluid dynamics
下载PDF
Establishment of Dynamic Model for Axle Box Bearing of High-Speed Trains Under Variable Speed Conditions 被引量:5
18
作者 Yongqiang Liu Baosen Wang +1 位作者 Bin Zhang Shaopu Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期340-351,共12页
In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and... In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model. 展开更多
关键词 Variable speed conditions high-speed train Bearing model Angle iteration Order ratio spectrum
下载PDF
An Investigation into the Effects of the Reynolds Number on High-Speed Trains Using a Low Temperature Wind Tunnel Test Facility 被引量:6
19
作者 Yundong Han Dawei Chen +1 位作者 Shaoqing Liu Gang Xu 《Fluid Dynamics & Materials Processing》 EI 2020年第1期1-19,共19页
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha... A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re. 展开更多
关键词 high-speed train wind tunnel test reynolds number effect aerodynamic performance yaw angle
下载PDF
Numerical simulatim of rainwater accumulation and flow characteristics over windshield of high-speed trains 被引量:5
20
作者 DU Jian LIANG Xi-feng +2 位作者 LI Gui-bo TIAN Hong-lei YANG Ming-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期198-209,共12页
In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of wind... In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of windshields are studied based on the presented model. The results show that an uneven water film is formed over the windshield, with rain water accumulation occurring for the concave windshield but not for the convex windshield. At low speeds, the average fluid-film thickness for a concave windshield is larger than that of a convex windshield;however, a minor difference occurs between these two values at high speeds, and a critical velocity is observed for the two types of windshields. When the train velocity is less than the critical velocity, the fluid film at the lower part of the windshield and the train nose flows downward, and beyond the critical velocity, the fluid film over the entire windshield and train nose flows upward. 展开更多
关键词 high-speed train WINDSHIELD rainwater accumulation aerodynamic characteristics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部