This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-d...This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.展开更多
Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straigh...Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.展开更多
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional...In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.展开更多
In order to construct the more effective kinematics method for industry, by taking a high-speed plate handing robot as an example, the structure and parameters of the robot linkages are analyzed, and the standard Dena...In order to construct the more effective kinematics method for industry, by taking a high-speed plate handing robot as an example, the structure and parameters of the robot linkages are analyzed, and the standard Denavit-Hartenberg method is applied to establish the coordinates and the kinematic equation of the linkages. Depending on the graphics and matrix calculation ability of Matlab especially including the Robotics Toolbox, the handling robot has been modeled and its kinematics, inverse kinematics and the trajectory planning have been simulated. Therefore, the correctness of kinematic equation has been verified, meanwhile, the functions of displacement, velocity, acceleration and trajectory of all the joints are also obtained. In a further step, this has verified the validity of all the structure parameters and pro- vided a reliable basis for the theoretical research on the design, dynamics analysis and trajectory planning of the ma- nipulator control system.展开更多
In this paper, we apply the split-platform automated storage/retrieval systems (SP-AS/RSs) (Hu et al., 2005) to store containers in the yard to improve the yard performance and to increase the utilization of the yard ...In this paper, we apply the split-platform automated storage/retrieval systems (SP-AS/RSs) (Hu et al., 2005) to store containers in the yard to improve the yard performance and to increase the utilization of the yard space. The layout of an SP-AS/RS based yard is described in detail. To achieve an efficient operation, we present a novel yard space allocation policy called the ‘second-carrier-based allocation policy’, which can help to alleviate the out-of-sequence problem of containers and the congestion of vehicles at the AS/RS racks. Different allocation policies are compared by an integrated container terminal simulation system. The simulation results show that the second-carrier-based policy is very efficient and has the potential to offer high terminal performance.展开更多
High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable ope...High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable operation cannot be ignored during the high-speed reciprocating motion.Thus,trajectory planning is essential for efficiency and stability from pick-and-place(PAP)actions.This paper presents a method for planning the equal-height pick-and-place trajectory considering velocity constraints to improve the PAP efficiency and stability of high-speed parallel robots.The velocity constraints in the start-and-end points can reduce vibration from picking and placing,making the trajectory more suitable to complex beltline situations.Based on velocity constraints,trajectory optimization includes trajectory smoothness and joint torque to optimize cycle time is carried out.This paper proposes an online trajectory optimization solution.By using back propagation(BP)neural networks,the solution is simplified and can be solved in real-time.Simulation and experiments were carried out on the SR4 parallel robot.The results show that the proposed method improves the efficiency,smoothness,and stability of the robot.This paper proposes an online trajectory planning method which is velocity constraints based and can improve the efficiency and stability of high-speed parallel robots.The work of this research is conducive to finely applying high-speed parallel robots.展开更多
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit th...Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.展开更多
Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer o...Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is tominimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume andminimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.展开更多
Optimal trajectory planning of high-speed trains(HSTs)aims to obtain such speed curves that guarantee safety,punctuality,comfort and energy-saving of the train.In this paper,a new shrinking horizon model predictive co...Optimal trajectory planning of high-speed trains(HSTs)aims to obtain such speed curves that guarantee safety,punctuality,comfort and energy-saving of the train.In this paper,a new shrinking horizon model predictive control(MPC)algorithm is proposed to plan the optimal trajectories of HSTs using real-time traffic information.The nonlinear longitudinal dynamics of HSTs are used to predict the future behaviors of the train and describe variable slopes and variable speed limitations based on real-time traffic information.Then optimal trajectory planning of HSTs is formulated as the shrinking horizon optimal control problem with the consideration of safety,punctuality,comfort and energy consumption.According to the real-time position and running time of the train,the shrinking horizon is updated to ensure the recursive feasibility of the optimization problem.The optimal speed curve of the train is computed by online solving the optimization problem with the Radau Pseudo-spectral method(RPM).Simulation results demonstrate that the proposed method can satisfy the requirements of energy efficiency and punctuality of the train.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 551009038 and the specialized research fund for the doctoral program of higher education under Grant No. 200802170010
文摘This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.
基金Project(2014JBZ012)supported by the Fundamental Research Funds for the Central Universities,China
文摘Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.
文摘In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.
文摘In order to construct the more effective kinematics method for industry, by taking a high-speed plate handing robot as an example, the structure and parameters of the robot linkages are analyzed, and the standard Denavit-Hartenberg method is applied to establish the coordinates and the kinematic equation of the linkages. Depending on the graphics and matrix calculation ability of Matlab especially including the Robotics Toolbox, the handling robot has been modeled and its kinematics, inverse kinematics and the trajectory planning have been simulated. Therefore, the correctness of kinematic equation has been verified, meanwhile, the functions of displacement, velocity, acceleration and trajectory of all the joints are also obtained. In a further step, this has verified the validity of all the structure parameters and pro- vided a reliable basis for the theoretical research on the design, dynamics analysis and trajectory planning of the ma- nipulator control system.
基金the Agency for Science, Technology and Research, the Maritime and Port Authority,and Nanyang Technological University, Singapore
文摘In this paper, we apply the split-platform automated storage/retrieval systems (SP-AS/RSs) (Hu et al., 2005) to store containers in the yard to improve the yard performance and to increase the utilization of the yard space. The layout of an SP-AS/RS based yard is described in detail. To achieve an efficient operation, we present a novel yard space allocation policy called the ‘second-carrier-based allocation policy’, which can help to alleviate the out-of-sequence problem of containers and the congestion of vehicles at the AS/RS racks. Different allocation policies are compared by an integrated container terminal simulation system. The simulation results show that the second-carrier-based policy is very efficient and has the potential to offer high terminal performance.
基金National Natural Science Foundation of China(Grant Nos.51922057,91948301).
文摘High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable operation cannot be ignored during the high-speed reciprocating motion.Thus,trajectory planning is essential for efficiency and stability from pick-and-place(PAP)actions.This paper presents a method for planning the equal-height pick-and-place trajectory considering velocity constraints to improve the PAP efficiency and stability of high-speed parallel robots.The velocity constraints in the start-and-end points can reduce vibration from picking and placing,making the trajectory more suitable to complex beltline situations.Based on velocity constraints,trajectory optimization includes trajectory smoothness and joint torque to optimize cycle time is carried out.This paper proposes an online trajectory optimization solution.By using back propagation(BP)neural networks,the solution is simplified and can be solved in real-time.Simulation and experiments were carried out on the SR4 parallel robot.The results show that the proposed method improves the efficiency,smoothness,and stability of the robot.This paper proposes an online trajectory planning method which is velocity constraints based and can improve the efficiency and stability of high-speed parallel robots.The work of this research is conducive to finely applying high-speed parallel robots.
文摘Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.
基金Project supported by the National Natural Science Foundation of China(No.61074151)the National Key Technology R&D Program of China(Nos.2008BAG11B01 and 2009BAG12A10)+1 种基金the Research Fund of the State Key Laboratory of Rail Traffic Control and Safety(Nos.RCS2008ZZ003 and RCS2009ZT002)the Research Fund of Beijing Jiaotong University(No.2011YJS035),China
文摘Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is tominimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume andminimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.
基金supported by the National Natural Science Foundation of China(No.61773345)the Zhejang Provincial Natural Science Foundation(No.LR17F030004).
文摘Optimal trajectory planning of high-speed trains(HSTs)aims to obtain such speed curves that guarantee safety,punctuality,comfort and energy-saving of the train.In this paper,a new shrinking horizon model predictive control(MPC)algorithm is proposed to plan the optimal trajectories of HSTs using real-time traffic information.The nonlinear longitudinal dynamics of HSTs are used to predict the future behaviors of the train and describe variable slopes and variable speed limitations based on real-time traffic information.Then optimal trajectory planning of HSTs is formulated as the shrinking horizon optimal control problem with the consideration of safety,punctuality,comfort and energy consumption.According to the real-time position and running time of the train,the shrinking horizon is updated to ensure the recursive feasibility of the optimization problem.The optimal speed curve of the train is computed by online solving the optimization problem with the Radau Pseudo-spectral method(RPM).Simulation results demonstrate that the proposed method can satisfy the requirements of energy efficiency and punctuality of the train.