期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels 被引量:2
1
作者 Weijun HUI Yihong NIE +2 位作者 Han DONG Yuqing WENG Chunxu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期787-792,共6页
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi... The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study. 展开更多
关键词 high-cycle fatigue Ultrahigh strength steel INCLUSION S-N curve Fish-eye fracture
下载PDF
Effect of heat treatment on high-cycle fatigue behavior of Mg-Zn-Y-Zr alloy
2
作者 刘志浩 徐永波 +2 位作者 韩恩厚 刘路 高国忠 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期28-32,共5页
High-cycle fatigue (HCF) behavior of as-forged-T5 Mg-Zn-Y-Zr wrought alloy with stress-ratio R=-1 at ambient environment was presented. The relationship between the maximum stress and the number of cycles to failure w... High-cycle fatigue (HCF) behavior of as-forged-T5 Mg-Zn-Y-Zr wrought alloy with stress-ratio R=-1 at ambient environment was presented. The relationship between the maximum stress and the number of cycles to failure was constructed. The results show that the fatigue strength at 107 cycles of the as-forged alloy in T5 state is higher than that of the alloy in T4 state. However, in T6 state, the fatigue strength at 107 cycles is higher than those of the alloys in both T5 and T4 states. 展开更多
关键词 MAGNESIUM ALLOY Mg-Zn-Y-Zr ALLOY high-cycle FATIGUE (HCF) HEAT treatment
下载PDF
High-cycle fatigue behavior of nickel-base single crystal superalloy
3
作者 刘源 于金江 +3 位作者 徐岩 孙晓峰 管恒荣 胡壮麒 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期57-60,共4页
High-cycle rotating bending fatigue behavior of SRR99 nickel-base single crystal alloy at 700 and 900℃ was investigated. The fatigue strengths for 107 cycles are 350 and 335MPa at 700 and 900℃, respectively. T... High-cycle rotating bending fatigue behavior of SRR99 nickel-base single crystal alloy at 700 and 900℃ was investigated. The fatigue strengths for 107 cycles are 350 and 335MPa at 700 and 900℃, respectively. The total fatigue life becomes shorter when the temperature increases regardless of the loading stress and frequency. With the number of cycles decreasing, the difference in fatigue strength at the two temperatures becomes smaller. Typical fatigue rupture process including crack initiation site, crack propagation region and final rupture region exhibits at 700℃. The fracture surface is basically characterized by cleavage rupture at 900℃. 展开更多
关键词 single crystal SUPERALLOY high-cycle FATIGUE FATIGUE LIMIT stress
下载PDF
Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue
4
作者 Peng Wang Peng Zhang +3 位作者 Bin Wang Yankun Zhu Zikuan Xu Zhefeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期114-128,共15页
Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a lar... Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a large scatter of fatigue lives. In this work, four S–N curves and more than 200 fatigue fracture morphologies were comprehensively investigated with a special focus on the size and type of inclusions at the fatigue cracking origin in GCr15 steel with a wide strength range by different heat treatments after high-cycle fatigue (HCF). It is found that the percentage of fatigue failure induced by the inclusion including Al2 O3 and TiN gradually increases with increasing the UTS, while the percentage of failure at sample surfaces decreases conversely and the fatigue strength first increases and then decreases. Besides, it is interestingly noted that the inclusion sizes at the cracking origin for TiN are smaller than that for Al2 O3 because the stress concentration factor for TiN is larger than that for Al2 O3 based on the finite element simulation. For the first time, a new fatigue cracking criterion including the isometric inclusion size line in the strength-toughness coordinate system with specific physical meaning was established to reveal the relationship among the UTS, fracture toughness, and the critical inclusion size considering different types of inclusions based on the fracture mechanics. And the critical inclusion size of Al2 O3 is about 1.33 times of TiN. The fatigue cracking criterion could be used to judge whether fatigue fracture occurred at inclusions or not and provides a theoretical basis for controlling the scale of different inclusion types for high-strength steels. Our work may offer a new perspective on the critical inclusion size in terms of the inclusion types, which is of scientific interest and has great merit to industrial metallurgical control for anti-fatigue design. 展开更多
关键词 High-strength steel high-cycle fatigue Critical inclusion size Inclusion types Tensile strength Fracture toughness Fatigue cracking criterion
原文传递
Effect of laser shock peening on combined low- and high-cycle fatigue life of casting and forging turbine blades 被引量:4
5
作者 Cao Chen Xiao-yong Zhang +3 位作者 Xiao-jun Yan Jun Ren Da-wei Huang Ming-jing Qi 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第1期108-119,共12页
Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbin... Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress. 展开更多
关键词 Laser shock peening Combined low-and high-cycle fatigue life (CCF) Full-scale turbine blade S-N curve -Threshold vibration stress
原文传递
Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys
6
作者 Ye Jin Kim Young Min Kim +3 位作者 Seong-Gu Hong Dae Woong Kim Chong Soo Lee Sung Hyuk Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期41-52,共12页
Mg-Al-Zn-Ca-Y alloys with excellent ignition and corrosion resistances—termed SEN alloys(where the letters"S,""E,"and"N"stand for stainless,environmentally friendly,and non-flammable,res... Mg-Al-Zn-Ca-Y alloys with excellent ignition and corrosion resistances—termed SEN alloys(where the letters"S,""E,"and"N"stand for stainless,environmentally friendly,and non-flammable,respectively)—have been developed recently.In this study,the microstructure,tensile properties,and high-cycle fatigue properties of an extruded Mg-9.0Al-0.8Zn-0.1Mn-0.3Ca-0.2Y(SEN9)alloy are investigated and compared with those of a commercial Mg-9.0Al-0.8Zn-0.1Mn(AZ91)alloy extruded under the same conditions.Both the extruded SEN9 alloy and the extruded AZ91 alloy have a fully recrystallized structure comprising equiaxed grains,but the former has a smaller average grain size owing to the promoted dynamic recrystallization during extrusion.The extruded AZ91 alloy contains coarse Mg_(17)Al_(12) discontinuous precipitate(DP)bands parallel to the extrusion direction,which are formed during its cool down after extrusion.In contrast,the extruded SEN9 alloy contains relatively fine undissolved Al_(2)Ca,Al_(8)Mn_(4)Y,and Al_(2)Y second-phase particles,which are formed during the solidification stage of the casting process.The tensile strength of the extruded SEN9 alloy,which has finer grains and more abundant particles,is slightly higher than that of the extruded AZ91 alloy.However,the difference in their strengths is relatively small because the stronger solid-solution hardening and precipitation hardening effects in the extruded AZ91alloy offset the stronger grain-boundary hardening and dispersion hardening effects in the extruded SEN9alloy to some extent.The tensile elongation of the extruded AZ91 alloy is significantly lower than that of the extruded SEN9 alloy because the large cracks formed in the DP bands in the former cause its premature fracture.Although the extruded SEN9 alloy has higher tensile properties than the extruded AZ91alloy,the high-cycle fatigue life and fatigue strength of the former are shorter and lower,respectively,than those of the latter.The DP bands in the extruded AZ91 alloy do not act as fatigue crack initiation sites,and therefore,fatigue cracks initiate on the specimen surface at all stress amplitude levels.In contrast,in most of the fatigue-fractured specimens of the extruded SEN9 alloy,fatigue cracks initiate on the undissolved Al_(2)Ca and Al_(2)Y particles present on the surface or subsurface of the specimens because of the high local stress concentration on the particles during cyclic loading.This particle-initiated fatigue fracture eventually decreases the high-cycle fatigue resistance of the extruded SEN9 alloy. 展开更多
关键词 Mg-Al-Zn-Ca-Y alloy EXTRUSION Tensile properties high-cycle fatigue Crack source
原文传递
High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium 被引量:8
7
作者 杨友 刘勇兵 +1 位作者 秦淑影 方懿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期591-595,共5页
The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and f... The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa ( 1% Ce) and 105.5 MPa (2 % Ce), respectively, at the number of cycles to failure, Nf = 1 × 10^7. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple. 展开更多
关键词 die-cast magnesium alloy CERIUM high-cycle fatigue fracture surface analysis rare earths
下载PDF
A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime 被引量:7
8
作者 Chengqi Sun Xiaolong Liu Youshi Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期383-391,共9页
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ... In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life. 展开更多
关键词 Very high-cycle fatigue - High-strength steels Fatigue life Inclusion size Crack growth rate
下载PDF
Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing 被引量:6
9
作者 Haijun Wang Hanzhang Li +3 位作者 Lei Tang Xuhua Ren Qingxiang Meng Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期757-769,共13页
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ... Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF. 展开更多
关键词 Three-dimensional internal laser-engraved crack(3D-ILC) Interaction of cracks Ultrasonic fatigue Penny-shaped crack Fracture mechanics high-cycle fatigue
下载PDF
Microstructural evolution and mechanical properties of duplex-phase Ti6242 alloy treated by laser shock peening
10
作者 Pu-ying SHI Xiang-hong LIU +3 位作者 Yong REN Zeng TIAN Feng-shou ZHANG Wei-feng HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第8期2521-2532,共12页
The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a... The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks. 展开更多
关键词 duplex-phase Ti6242 alloy surface modification laser shock peening gradient microstructure high-cycle fatigue properties
下载PDF
Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning
11
作者 Xiaoyuan Teng Jianchao Pang +4 位作者 Feng Liu Chenglu Zou Xin Bai Shouxin Li Zhefeng Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1536-1548,共13页
Conventional fatigue tests on complex components are difficult to sample,time-consuming and expensive.To avoid such problems,several popular machine learning(ML)algorithms were used and compared to predict fatigue lif... Conventional fatigue tests on complex components are difficult to sample,time-consuming and expensive.To avoid such problems,several popular machine learning(ML)algorithms were used and compared to predict fatigue life of gray cast iron(GCI)with the complex microstructures.The feature analysis shows that the fatigue life of GCI is mainly influenced by the external environment such as the stress amplitude,and the internal microstructure parameters such as the percentage of graphite,graphite length,stress concentration factor at the graphite tip,matrix microhardness and Brinell hardness.For simplicity,collected datasets with some of the above features were used to train ML models including back-propagation neural network(BPNN),random forest(RF)and eXtreme gradient boosting(XGBoost).The comparison results suggest that the three models could predict the fatigue lives of GCI,while the implemented RF algorithm is the best performing model.Moreover,the S–N curves fitted by the Basquin relation in the predicted data have a mean relative error of 15%compared to the measured data.The results have demonstrated the advantages of ML,which provides a generic way to predict the fatigue life of GCI for reducing time and cost. 展开更多
关键词 Gray cast iron Microstructure feature Machine learning high-cycle fatigue life
原文传递
Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation 被引量:12
12
作者 Y.Z.Tian S.J.Sun +1 位作者 H.R.Lin Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期334-340,共7页
Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coar... Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coarse-grained(CG) counterpart were investigated under fully reversed cyclic deformation.The fatigue strength of the UFG HEA can be significantly enhanced by refining the grain size. However,no grain coarsening was observed in the UFG HEA during fatigue tests. Mechanisms for the superior mechanical properties of the UFG HEA were explored. 展开更多
关键词 High-entropy alloy(HEA) Ultrafine-grain(UFG) high-cycle FATIGUE RECRYSTALLIZATION GRAIN size FATIGUE strength
原文传递
Corrected stress field intensity approach based on averaging superior limit of intrinsic damage dissipation work 被引量:6
13
作者 Hao-ran Li Yan Peng +1 位作者 Yang Liu Ming Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第10期1094-1103,共10页
Corrected stress field intensity obtained by averaging the superior limit of intrinsic damage dissipation work in critical domain, which considers thoroughly thermodynamic consistency within irreversible thermodynamic... Corrected stress field intensity obtained by averaging the superior limit of intrinsic damage dissipation work in critical domain, which considers thoroughly thermodynamic consistency within irreversible thermodynamic framework, was proposed for predictions of high-cycle fatigue endurance limits. Simultaneously, the effects of mean stress, additional hardening behavior related to non-proportional loading paths and stress gradients on multiaxial high-cycle fatigue are taken into account in the proposed approach. The approach is an extension of the general stress field intensity. For a better comparison, existing multiaxial high-cycle fatigue criteria were employed to predict the endurance limits of different metallic materials subjected to different multiaxial loading paths, and it is shown that present proposal performs better from statistical value of error indexes, which make the proposed approach of corrected stress field intensity and its associated concepts provide a new conception to predict endurance limits of multiaxial high-cycle fatigue with high accuracy. 展开更多
关键词 Intrinsic damage dissipation work Irreversible thermodynamic framework Corrected stress field intensity Multiaxial high-cycle fatigue Stress gradient
原文传递
Review on fatigue life prediction models of welded joint 被引量:5
14
作者 Guozheng Kang Huiliang Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第3期701-726,共26页
Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.T... Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.Thus,such influencing factors of welded joint fatigue are firstly summarized in this work;and then,the existing life prediction models are reviewed from two aspects,i.e.,uniaxial and multiaxial ones;finally,significant conclusions of existing experimental and theoretical researches and some suggestions on improving the fatigue assessment of welded joints,especially for the low-cycle fatigue with the occurrence of ratchetting,are provided. 展开更多
关键词 Welded joint high-cycle fatigue Low-cycle fatigue Influencing factors Life prediction models
原文传递
Effect of cold deformation on corrosion fatigue behavior of nickel-free high nitrogen austenitic stainless steel for coronary stent application 被引量:4
15
作者 Jun Li Yixun Yang +2 位作者 Yibin Ren Jiahui Dong Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第4期660-665,共6页
Due to the excellent mechanical properties, good corrosion resistance, high biocompatibility and nickel- free character, the high nitrogen nickel-free austenitic stainless steel (HNASS) becomes an ideally alternativ... Due to the excellent mechanical properties, good corrosion resistance, high biocompatibility and nickel- free character, the high nitrogen nickel-free austenitic stainless steel (HNASS) becomes an ideally alternative material for coronary stents. Stent implantation works in harsh blood environment after a balloon dilatation, i.e., the material is used in a corrosive environment with a permanent deforma- tion. The present study attempts to investigate effects of pre-straining on high-cycle fatigue behavior and corrosion fatigue behavior of HNASS in Hank's solution and the relevant mechanism for coronary stents application. It is found that higher pre-straining on HNASS results in higher strength and maintains almost same corrosion resistance. Fatigue limit of 0% HNASS is 550 MPa, while corrosion fatigue limit is 475 MPa. And improvement in fatigue limit of 20% and 35% pre-strained HNASS is in comparison with the 0% HNASS, while corrosion would undermine the fatigue behavior of HNASS. In a suitable range, the pre- straining had a beneficial effect on corrosion fatigue strength of HNASS, such as nearly 300 MPa improved with 20% cold deformation. This result provides a good reference for predicting the life of HNASS stent and as well its design. 展开更多
关键词 Cold deformation High nitrogen austenitic stainless steel high-cycle fatigue Corrosion fatigue
原文传递
Prediction of combined cycle fatigue life of TC11 alloy based on modified nonlinear cumulative damage model 被引量:1
16
作者 Zhenhua ZHAO Kainan LU +2 位作者 Lingfeng WANG Lulu LIU Wei CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期73-84,共12页
The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combi... The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combined high and low cycle fatigue(CCF)tests of TC11 titanium alloy were carried out,and the influencing factors of CCF life were analysed.The CCF life declines with the decrease of the ratio of high-low cycle stress frequency m.Both linear and nonlinear cumulative damage models are used to predict the CCF life.The CCF life prediction error of the linear cumulative damage model is great and the predictions tend to be overestimated,which is dangerous for engineering application.The accuracy is relatively high when the high-low cycle stress frequency ratio m500.The accuracy of nonlinear cumulative damage model is higher than that of linear model when the high-low cycle stress frequency ratio m500.Based on the relationship between high cycle average stress rmajor and material yield limit rp,0.2,a correction term is added to the nonlinear cumulative damage model and verified,which made the modified model more accurate when m500. 展开更多
关键词 Combined cycle Damage accumulation high-cycle fatigue Low-cycle fatigue Prediction method
原文传递
A Methodology to Predict Fatigue Life of Cast Iron:Uniform Material Law for Cast Iron 被引量:1
17
作者 Sinan Korkmaz 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第8期42-45,共4页
Mechanical, physical and manufacturing properties of east iron make it attractive for many fields of application, such as cranks and cylinder holds. As in design of all metals, fatigue life prediction is an intrinsic ... Mechanical, physical and manufacturing properties of east iron make it attractive for many fields of application, such as cranks and cylinder holds. As in design of all metals, fatigue life prediction is an intrinsic part of the design process of structural sections that are made of cast iron. A methodology to predict high-cycle fatigue life of cast iron is proposed. Stress amplitude-strain amplitude, strain amplitude-number of loading cycles relationships of cast iron are investigated. Also, fatigue life prediction in terms of Smith, Watson and Topper parameter is carried out using the proposed method. Results indicate that the analytical outcomes of the proposed methodology are in good accordance with the experimental data for the two studied types of cast iron: EN-GJS-400 and EN-GJS-600. 展开更多
关键词 high-cycle fatigue fatigue behavior fatigue life prediction cast iron
原文传递
Effects of metallic microstructures on fatigue fracture of Q345 steel
18
作者 Han-qing Liu Chun-ming Wang +3 位作者 Hong Zhang Zhi-yong Huang Qing-yuan Wang Qiang Chen 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第6期702-709,共8页
Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loa... Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loading axis were verified to be the most potential sites to fabricate the microcracks caused by the high strain gradient. The initial crack extension inside ferrite grain was driven by shear stress in model II along the direction with a 45° angle to the loading axis. Banded pearlite colony and the high-angle grain boundaries were considered as the dominant factors that promote the fatigue resistance of the material through arousing crack deflection in short crack propagation range and crack branching in long crack propagation range to reduce the crack propagation driving force in the crack tip. P-S-N curves were used to quantify the dispersion of fatigue lifetimes and evaluate the effect of elevated volume content of pearlite colony on the fatigue performance of the material. 展开更多
关键词 Ferrite-pearlite steel high-cycle fatigue Crack propagation Crack branching High-angle grain boundary P-S-N curve
原文传递
Fatigue response,fracture characteristic and life modeling of a near-alpha titanium alloy under typical cyclic loadings in service
19
作者 Jia Huang Yin-Yin Luo +3 位作者 Peng-Tao Zhao Duo-Qi Shi Xiao-Guang Yang Hui-Chen Yu 《Rare Metals》 SCIE EI CAS CSCD 2016年第9期676-685,共10页
Experimental investigations on the fatigue behavior of a near-alpha titanium alloy under typical cyclic loadings were carried out to simulate the service loading states applied on the engine blades.The axial stress-co... Experimental investigations on the fatigue behavior of a near-alpha titanium alloy under typical cyclic loadings were carried out to simulate the service loading states applied on the engine blades.The axial stress-controlled tension–tension low-cycle fatigue(LCF) tests were carried out over a range of maximum stresses and stress ratios.The rotary bending tests were conducted using a step-loading procedure to reveal the high-cycle fatigue(HCF) limit stresses.The cyclic softening effect is observed in this material,and the strain ratcheting occurs obviously at the maximum LCF loading of 900 MPa.The LCF resistance is found to be dependent on both the maximum loading and the stress ratio.The HCF limit stresses for 1 9 107 and 1 9 106 cycles are determined as405.7 and 457.6 MPa,respectively.The macroscopic fatigue fracture mode and the failure features on fracture surfaces were analyzed by scanning electron microscope(SEM). 展开更多
关键词 Titanium alloy high-cycle fatigue Lowcycle fatigue Fracture analysis Ratcheting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部