Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore...Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.展开更多
With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carri...With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carriers,play a vital role in route planning and navigation service.Compared with conventional maps,high-definition(HD)maps possesses higher precision,richer information,and various services and are regarded as critical infrastructure for autonomous driving.However,heterogeneous HD map data standards and models have different characteristics and advantages,and thus they rarely meet all autonomous driving requirements for different driving objectives.This research presents an interoperable map data model,the Open HD Map Service Model(OHDMSM),to provide a reference for HD map development.The designed OHDMSM,which contains three data layers and a set of corresponding interfaces,demonstrates high interoperability for HD map data fusion and application.As a proof of concept,an HD map data system is implemented with all functions following the designed data model and interfaces of OHDMSM.The design and development of OHDMSM data structures,interfaces and systems will benefit data requesting,updating,and interoperation for HD map data worldwide,which can be helpful for developing autonomous driving and intelligent transportation in the Digital Earth.展开更多
High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image ...High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.展开更多
基金supported by the Beijing Municipal Science and Technology Commission(BMSTC,No.D171100002617001).
文摘Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.
基金supported by National Key Research and Development Program of China:[Grant Number 2021YFB2501101]Smart Cities Research Institute(Q-CDA7)at the Hong Kong Polytechnic University:[Grant Number Q-CDA7]Guangdong Science and Technology Strategic Innovation Fund(the Guangdong–Hong Kong-Macao Joint Laboratory Program):Guangdong Science and Technology Strategic Innovation Fund:[Grant Number 2020B12120300092020B1212030009].
文摘With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carriers,play a vital role in route planning and navigation service.Compared with conventional maps,high-definition(HD)maps possesses higher precision,richer information,and various services and are regarded as critical infrastructure for autonomous driving.However,heterogeneous HD map data standards and models have different characteristics and advantages,and thus they rarely meet all autonomous driving requirements for different driving objectives.This research presents an interoperable map data model,the Open HD Map Service Model(OHDMSM),to provide a reference for HD map development.The designed OHDMSM,which contains three data layers and a set of corresponding interfaces,demonstrates high interoperability for HD map data fusion and application.As a proof of concept,an HD map data system is implemented with all functions following the designed data model and interfaces of OHDMSM.The design and development of OHDMSM data structures,interfaces and systems will benefit data requesting,updating,and interoperation for HD map data worldwide,which can be helpful for developing autonomous driving and intelligent transportation in the Digital Earth.
文摘背景:腰椎小关节炎是引起下腰痛的一个主要原因,目前主要依靠MRI进行初步定性诊断,但仍有一定漏诊、误诊的概率发生,因此MR T2^(*)mapping成像技术有望成为定量检查腰椎小关节炎软骨损伤的重要检测手段。目的:探讨MR T2^(*)mapping成像技术在定量分析腰椎小关节炎软骨损伤退变中的应用价值。方法:收集南京医科大学第四附属医院2020年4月至2022年3月门诊或住院合并下腰痛共110例患者,设为病例组;同时招募无症状志愿者80例,设为对照组。对所有纳入对象L1-S1的小关节行3.0 T MR扫描,获取T2^(*)mapping横断位图像和T2WI图像,分别对所有小关节软骨进行Weishaupt分级及T2^(*)值测量,收集数据并行统计学分析。不同小关节Weishaupt分级之间小关节软骨T2^(*)值比较采用单因素方差分析。结果与结论:①经统计分析发现,病例组腰椎小关节软骨T2^(*)值(17.6±1.5)ms明显较对照组(21.4±1.3)ms降低,差异有显著性意义(P<0.05);②在病例组中,随着腰椎小关节Weishaupt分级增加,小关节软骨T2^(*)值也呈逐渐下降趋势,且这种差异有显著性意义(P<0.05);③提示T2^(*)mapping能够较好地显示腰椎小关节软骨损伤的早期病理变化,腰椎小关节软骨的T2^(*)值能够定量评估腰椎小关节的软骨损伤程度;T2^(*)mapping成像技术能为影像学诊断腰椎小关节炎软骨早期损伤提供很好的理论依据,具有重要的临床应用价值。
基金the National Natural Science Foundation of China(No.U1764264/61873165)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)the Guangxi Key Laboratory of Automobile Components and Vehicle Technology Research Project(No.2020GKLACVTKF02)。
文摘High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.