期刊文献+
共找到831篇文章
< 1 2 42 >
每页显示 20 50 100
Censored Composite Conditional Quantile Screening for High-Dimensional Survival Data
1
作者 LIU Wei LI Yingqiu 《应用概率统计》 CSCD 北大核心 2024年第5期783-799,共17页
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef... In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated. 展开更多
关键词 high-dimensional survival data censored composite conditional quantile coefficient sure screening property rank consistency property
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
2
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional Covariance Matrix Missing data Sub-Gaussian Noise Optimal Estimation
下载PDF
Discrete GWO Optimized Data Aggregation for Reducing Transmission Rate in IoT
3
作者 S.Siamala Devi K.Venkatachalam +1 位作者 Yunyoung Nam Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1869-1880,共12页
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient ... The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient life.The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things(IoT),Wireless Sensor Networks(WSN),Embedded systems,Deep learning approaches and Optimization and aggregation methods.The data generated through these technologies will demand the bandwidth,data rate,latency of the network.In this proposed work,efficient discrete grey wolf optimization(DGWO)based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code(ECEMAC)has been used to aggregate the parameters generated from the wearable sensor devices of the patient.The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO.Aggregation scheme will reduce the number of transmissions over the network.The aggregated data are preprocessed at edge node to remove the noise for better diagnosis.Edge node will reduce the overhead of cloud server.The aggregated data are forward to cloud server for central storage and diagnosis.This proposed smart diagnosis will reduce the transmission cost through aggrega-tion scheme which will reduce the energy of the system.Energy cost for proposed system for 300 nodes is 0.34μJ.Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme(SPPDA),concealed data aggregation scheme for multiple application(CDAMA)and secure aggregation scheme(ASAS)are 1.3μJ,0.81μJ and 0.51μJ respectively.The optimization approaches and encryption method will ensure the data privacy. 展开更多
关键词 discrete grey wolf optimization data aggregation cloud computing IOT WSN smart healthcare elliptic curve elgamal energy optimization
下载PDF
Observation points classifier ensemble for high-dimensional imbalanced classification 被引量:1
4
作者 Yulin He Xu Li +3 位作者 Philippe Fournier‐Viger Joshua Zhexue Huang Mianjie Li Salman Salloum 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期500-517,共18页
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)... In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems. 展开更多
关键词 classifier ensemble feature transformation high-dimensional data classification imbalanced learning observation point mechanism
下载PDF
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection
5
作者 Yanlu Gong Junhai Zhou +2 位作者 Quanwang Wu MengChu Zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 Bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
6
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY NORMALIZATION SUBSPACE NPsim
下载PDF
Design of similarity measure for discrete data and application to multi-dimension 被引量:1
7
作者 LEE Myeong-ho 魏荷 +2 位作者 LEE Sang-hyuk LEE Sang-min SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2013年第4期982-987,共6页
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d... Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem. 展开更多
关键词 similarity measure MULTI-DIMENSION discrete data relative degree power interconnected system
下载PDF
Discrete Event Simulation-Based Evaluation of a Single-Lane Synchronized Dual-Traffic Light Intersections
8
作者 Chimezie Calistus Ogharandukun Martin +1 位作者 Abdullahi Monday Essien Joe 《Journal of Computer and Communications》 2023年第10期82-100,共19页
This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system model... This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives. 展开更多
关键词 Multi-Core Processing Distributed Computing Event-Driven Modelling discrete Event Simulation data Analysis and Visualization
下载PDF
A data-mining approach to biomarker identification from protein profiles using discrete stationary wavelet transform
9
作者 Hussain MONTAZERY-KORDY Mohammad Hossein MIRAN-BAYGI Mohammad Hassan MORADI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第11期863-870,共8页
Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods... Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power. 展开更多
关键词 PROTEOMICS discrete stationary wavelet transform data mining Feature selection BIOMARKER Cancer classification
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
10
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
下载PDF
Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
11
作者 Uday Kant Jha Peter Bajorski +3 位作者 Ernest Fokoue Justine Vanden Heuvel Jan van Aardt Grant Anderson 《Open Journal of Statistics》 2017年第4期702-717,共16页
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripeni... Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability. 展开更多
关键词 high-dimensional data MULTI-STEP Adaptive Elastic Net MINIMAX CONCAVE Penalty Sure Independence Screening Functional data Analysis
下载PDF
Making Short-term High-dimensional Data Predictable
12
作者 CHEN Luonan 《Bulletin of the Chinese Academy of Sciences》 2018年第4期243-244,共2页
Making accurate forecast or prediction is a challenging task in the big data era, in particular for those datasets involving high-dimensional variables but short-term time series points,which are generally available f... Making accurate forecast or prediction is a challenging task in the big data era, in particular for those datasets involving high-dimensional variables but short-term time series points,which are generally available from real-world systems.To address this issue, Prof. 展开更多
关键词 RDE MAKING SHORT-TERM high-dimensional data Predictable
下载PDF
Heat Conduction Analytical Solutions to be Applied in Boundary Conditions Obtained from Discrete Data
13
作者 Ana Paula Femandes Gilmar Guimaraes 《Journal of Energy and Power Engineering》 2013年第8期1527-1532,共6页
Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating... Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters, thus, it is possible to reduce computation time in comparison with numerical methods. In this paper, an alternative procedure is presented. Here is used a hybrid solution based on Green's function and real characteristics (discrete data) of the boundary conditions. 展开更多
关键词 Heat conduction analytical solutions discrete data.
下载PDF
Data-driven Surrogate-assisted Method for High-dimensional Multi-area Combined Economic/Emission Dispatch
14
作者 Chenhao Lin Huijun Liang +2 位作者 Aokang Pang Jianwei Zhong Yongchao Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期52-64,共13页
Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not mee... Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not meet oper ational constraints.To overcome excessive computational ex pense in high-dimensional MACEED problems,a novel data-driven surrogate-assisted method is proposed.First,a cosine-similarity-based deep belief network combined with a back-propagation(DBN+BP)neural network is utilized to replace cost and emission functions.Second,transfer learning is applied with a pretraining and fine-tuning method to improve DBN+BP regression surrogate models,thus realizing fast con struction of surrogate models between different regional power systems.Third,a multi-objective antlion optimizer with a novel general single-dimension retention bi-objective optimization poli cy is proposed to execute MACEED optimization to obtain scheduling decisions.The proposed method not only ensures the convergence,uniformity,and extensibility of the Pareto front,but also greatly reduces the computational time.Finally,a 4-ar ea 40-unit test system with different constraints is employed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Multi-area combined economic/emission dispatch high-dimensional power system deep belief network data driven transfer learning
原文传递
Intrusion Detection System for PS-Poll DoS Attack in 802.11 Networks Using Real Time Discrete Event System 被引量:5
15
作者 Mayank Agarwal Sanketh Purwar +1 位作者 Santosh Biswas Sukumar Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期792-808,共17页
Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to prese... Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios. 展开更多
关键词 Fault detection and diagnosis intrusion detection system(IDS) null data frame power save attack PS-Poll frame real time discrete event system(DES)
下载PDF
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:13
16
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera... Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
下载PDF
Discrete rough set analysis of two different soil-behavior-induced landslides in National Shei-Pa Park,Taiwan 被引量:4
17
作者 Shih-Hsun Chang Shiuan Wan 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第6期807-816,共10页
The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data ... The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data and information on geology.GIS,remote sensing and digital elevation model(DEM) were used in combination to extract the attribute values of the surface material in the vast study area of SheiPa National Park,Taiwan.The factors influencing landslides were collected and quantification values computed.The major soil component of loam and gravel in the Shei-Pa area resulted in different landslide problems.The major factors were successfully extracted from the influencing factors.Finally,the discrete rough set(DRS) classifier was used as a tool to find the threshold of each attribute contributing to landslide occurrence,based upon the knowledge database.This rule-based knowledge database provides an effective and urgent system to manage landslides.NDVI(Normalized Difference Vegetation Index),VI(Vegetation Index),elevation,and distance from the road are the four major influencing factors for landslide occurrence.The landslide hazard potential diagrams(landslide susceptibility maps) were drawn and a rational accuracy rate of landslide was calculated.This study thus offers a systematic solution to the investigation of landslide disasters. 展开更多
关键词 Landslide data mining discrete rough sets Taiwan
下载PDF
CSFW-SC: Cuckoo Search Fuzzy-Weighting Algorithm for Subspace Clustering Applying to High-Dimensional Clustering 被引量:1
18
作者 WANG Jindong HE Jiajing +1 位作者 ZHANG Hengwei YU Zhiyong 《China Communications》 SCIE CSCD 2015年第S2期55-63,共9页
Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subsp... Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subspace clustering algorithm. In the proposed algorithm, a novel objective function is firstly designed by considering the fuzzy weighting within-cluster compactness and the between-cluster separation, and loosening the constraints of dimension weight matrix. Then gradual membership and improved Cuckoo search, a global search strategy, are introduced to optimize the objective function and search subspace clusters, giving novel learning rules for clustering. At last, the performance of the proposed algorithm on the clustering analysis of various low and high dimensional datasets is experimentally compared with that of several competitive subspace clustering algorithms. Experimental studies demonstrate that the proposed algorithm can obtain better performance than most of the existing soft subspace clustering algorithms. 展开更多
关键词 high-dimensional data CLUSTERING soft SUBSPACE CUCKOO SEARCH FUZZY CLUSTERING
下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:2
19
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic Bayesian network(DDBN) parameter learning missing data filling Bayesian estimation
下载PDF
H_∞ Filter Design for Discrete-time Systems with Missing Measurements 被引量:18
20
作者 WANG Wu YANG Fu-Wen 《自动化学报》 EI CSCD 北大核心 2006年第1期107-111,共5页
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-... For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach. 展开更多
关键词 数据丢失 离散系统 滤波器 线性矩阵不等式
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部