期刊文献+
共找到23,804篇文章
< 1 2 250 >
每页显示 20 50 100
Target Controllability of Multi-Layer Networks With High-Dimensional Nodes
1
作者 Lifu Wang Zhaofei Li +1 位作者 Ge Guo Zhi Kong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1999-2010,共12页
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte... This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion. 展开更多
关键词 high-dimensional nodes inter-layer couplings multi-layer networks target controllability
下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
2
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper high-dimensional feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method
3
作者 Xiaoyi Wang Xinyue Chang +2 位作者 Wenxuan Wang Zijie Qiao Feng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1775-1796,共22页
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi... The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method. 展开更多
关键词 Reliability-based design optimization high-dimensional model decomposition point estimation method Lagrange interpolation aviation hydraulic piping system
下载PDF
Censored Composite Conditional Quantile Screening for High-Dimensional Survival Data
4
作者 LIU Wei LI Yingqiu 《应用概率统计》 CSCD 北大核心 2024年第5期783-799,共17页
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef... In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated. 展开更多
关键词 high-dimensional survival data censored composite conditional quantile coefficient sure screening property rank consistency property
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
5
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional Covariance Matrix Missing Data Sub-Gaussian Noise Optimal Estimation
下载PDF
Observation points classifier ensemble for high-dimensional imbalanced classification 被引量:1
6
作者 Yulin He Xu Li +3 位作者 Philippe Fournier‐Viger Joshua Zhexue Huang Mianjie Li Salman Salloum 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期500-517,共18页
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)... In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems. 展开更多
关键词 classifier ensemble feature transformation high-dimensional data classification imbalanced learning observation point mechanism
下载PDF
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection
7
作者 Yanlu Gong Junhai Zhou +2 位作者 Quanwang Wu MengChu Zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 Bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
下载PDF
K-Hyperparameter Tuning in High-Dimensional Space Clustering:Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes
8
作者 Rufus Gikera Jonathan Mwaura +1 位作者 Elizaphan Muuro Shadrack Mambo 《Journal on Artificial Intelligence》 2023年第1期75-112,共38页
k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this v... k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this value correctly is critical for building effective k-means models.The use of the traditional elbow method to help identify this value has a long-standing literature.However,when using this method with certain datasets,smooth curves may appear,making it challenging to identify the k-value due to its unclear nature.On the other hand,various internal validation indexes,which are proposed as a solution to this issue,may be inconsistent.Although various techniques for solving smooth elbow challenges exist,k-hyperparameter tuning in high-dimensional spaces still remains intractable and an open research issue.In this paper,we have first reviewed the existing techniques for solving smooth elbow challenges.The identified research gaps are then utilized in the development of the new technique.The new technique,referred to as the ensemble-based technique of a self-adapting autoencoder and internal validation indexes,is then validated in high-dimensional space clustering.The optimal k-value,tuned by this technique using a voting scheme,is a trade-off between the number of clusters visualized in the autoencoder’s latent space,k-value from the ensemble internal validation index score and one that generates a value of 0 or close to 0 on the derivative f″′(k)(1+f′(k)^(2))−3 f″(k)^(2)f″((k)2f′(k),at the elbow.Experimental results based on the Cochran’s Q test,ANOVA,and McNemar’s score indicate a relatively good performance of the newly developed technique in k-hyperparameter tuning. 展开更多
关键词 k-hyperparameter tuning high-dimensional smooth elbow
下载PDF
Energy dissipation mechanism and ballistic characteristic optimization in foam sandwich panels against spherical projectile impact
9
作者 Jianqiang Deng Tao Liu +4 位作者 Liming Chen Xin Pan Jingzhe Wang Shaowei Zhu Weiguo Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期108-122,共15页
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th... This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application. 展开更多
关键词 Sandwich panel Numerical simulation Ballistic resistance Specific penetration energy Energy analysis
下载PDF
Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model
10
作者 Er-feng Zhao Xin Li Chong-shi Gu 《Water Science and Engineering》 EI CAS CSCD 2024年第2期177-186,共10页
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ... Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures. 展开更多
关键词 Ultrahigh arch dam Structural performance Deformation behavior Diagnosis criterion panel data model
下载PDF
Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment
11
作者 Martha L.Sánchez G.Capote 《Journal of Renewable Materials》 EI CAS 2024年第10期1791-1810,共20页
The construction sector is one of the main sources of pollution,due to high energy consumption and the toxic substances generated during the processing and use of traditional materials.The production of cement,steel,a... The construction sector is one of the main sources of pollution,due to high energy consumption and the toxic substances generated during the processing and use of traditional materials.The production of cement,steel,and other conventional materials impacts both ecosystems and human health,increasing the demand for ecological and biodegradable alternatives.In this paper,we analyze the properties of panels made from a combination of plant fibers and castor oil resin,analyzing the viability of their use as construction material.For the research,orthogonal fabrics made with waste plant fibers supplied by a company that deals with the manufacture of furniture and craft products were used.These fabrics were made with strips of plant fibers of the Calamus rotang,Bambusa vulgaris,Heteropsis flexuosa,and Salix viminalis species.To improve their compatibility with the castor oil resin,a cold argon plasma treatment was applied.The effect of the treatment on the properties of the fibers and the panels was analyzed.The density,water absorption capacity,and swelling percentage were evaluated.Tensile,compression,static bending,and linear buckling tests were carried out.The study found that panels made with treated fiber fabrics exhibited a reduction of approximately 10%in absorption capacity and up to 35%in swelling percentage values.Panels made with Bambusa vulgaris fabrics exhibited the highest strength and stiffness values.Numerical models were constructed using commercial finite element software.When comparing the numerical results with the experimental ones,differences of less than 15%were seen,demonstrating that the models allow adequately predicting the analyzed properties.On comparing the values obtained with the characteristic values of oriented strand board,the results suggest that panels made with unconventional materials could replace commercial panels traditionally made with wood-based fibers and particles and other composite materials in several applications in the construction industry. 展开更多
关键词 Unconventional materials nonstructural panels plantfibers surface treatment physical properties mechanical properties
下载PDF
How R&D investment promotes green technology innovation in the context of digitalization?-An empirical analysis based on provincial panel data
12
作者 LIU Jie LI Zhi-hui WEI Fang-xin 《Ecological Economy》 2024年第1期39-52,共14页
Green technology innovation is an important driving force and source to promote my country’s high-quality development,and it is the core path to achieve sustainable development.This paper uses my country’s provincia... Green technology innovation is an important driving force and source to promote my country’s high-quality development,and it is the core path to achieve sustainable development.This paper uses my country’s provincial panel data from 2016 to 2019 to study the impact mechanism of R&D investment on green technology innovation,and introduces the level of digitization,using the panel threshold model to discuss its role in the impact mechanism of R&D investment on green technology innovation.The study found that when the level of digitalization in a region is low,increasing R&D investment does not necessarily improve the ability of green technology innovation;when the level of digitalization is relatively high,R&D investment has a positive role in promoting green technology innovation.Therefore,it is necessary to improve policies to encourage enterprises to increase investment in research and development;at the same time,it is necessary to promote the coordinated development of digital foundation,digital investment,digital literacy,digital economy and digital application,and promote the deep integration of digitalization and green technology innovation. 展开更多
关键词 green technology innovation R&D investment digital level panel model
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
13
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic panels Fault Detection Deep Learning Image Processing
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
14
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite panels Tannins Reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
15
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
16
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (PV) Modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) Solar panel Temperature Profile
下载PDF
血清外泌体microRNAs单一及组合panel对结直肠癌的诊断价值 被引量:2
17
作者 郝剑 韩磊 《实用医学杂志》 CAS 北大核心 2023年第3期369-373,共5页
目的 检测血清外泌体miR-15b、miR-16、miR-21和miR-31在结直肠癌患者中的表达水平,并评估其对结直肠癌的诊断价值。方法 选取2018年3月至2022年5月本院收治的123例直肠癌患者(结直肠癌组)及117例大肠腺瘤患者作为研究对象(结直肠癌组)... 目的 检测血清外泌体miR-15b、miR-16、miR-21和miR-31在结直肠癌患者中的表达水平,并评估其对结直肠癌的诊断价值。方法 选取2018年3月至2022年5月本院收治的123例直肠癌患者(结直肠癌组)及117例大肠腺瘤患者作为研究对象(结直肠癌组),并纳入150例健康对照者作为对照(健康对照组)。提取血清外泌体中miR-15b、miR-16、miR-21和miR-31,qRT-PCR比较4种miRNA在各组中表达水平差异。受试者工作特征(ROC)曲线评价4种miRNA单一及组合panel对结直肠癌的诊断价值。结果 结直肠癌组血清miR-15b、miR-16、miR-21和miR-31水平高于健康对照组(P <0.05),且miR-15b、miR-21和miR-31水平高于结直肠腺瘤组(P <0.05)。Ⅲ-Ⅳ期、伴淋巴结浸润、低分化程度结直肠癌组患者血清miR-15b、miR-21和miR-31水平分别高于Ⅰ-Ⅱ期、不伴淋巴结浸润、中-高分化程度患者,miR-15b、miR-21和miR-31水平与临床TNM分期、伴淋巴结浸润呈正相关,与分化程度呈负相关。4种miRNA中诊断价值最高的指标是miR-15b,其敏感度和特异度分别为81.33%和91.80%(P <0.05);且miR-15b、miR-21和miR-31的组合panel具有更好的诊断价值,其敏感度和特异度分别为95.06%和94.44%(P <0.05)。结论 miR-15b、miR-16、miR-21和miR-31在结直肠癌患者外周血血清中异常表达,miR-15b、miR-21和miR-31水平与结直肠癌的发病及进展密切相关,且miR-15b、miR-21和miR-31组合panel具有作为结直肠癌的新型诊断模型的潜力。 展开更多
关键词 血清外泌体miRNA 结直肠癌 miRNA panel 诊断价值
下载PDF
Guaranteed Cost Consensus for High-dimensional Multi-agent Systems With Time-varying Delays 被引量:8
18
作者 Zhong Wang Ming He +2 位作者 Tang Zheng Zhiliang Fan Guangbin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期181-189,共9页
Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for... Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results. 展开更多
关键词 Guaranteed cost consensus high-dimensional multi-agent system time-varying delay
下载PDF
Chip-Based High-Dimensional Optical Neural Network 被引量:6
19
作者 Xinyu Wang Peng Xie +1 位作者 Bohan Chen Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期570-578,共9页
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz... Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing. 展开更多
关键词 Integrated optics Optical neural network high-dimension Mach-Zehnder interferometer Nonlinear activation function Parallel high-capacity analog computing
下载PDF
A Sequence Image Matching Method Based on Improved High-Dimensional Combined Features 被引量:2
20
作者 Leng Xuefei Gong Zhe +1 位作者 Fu Runzhe Liu Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期820-828,共9页
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim... Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes. 展开更多
关键词 SEQUENCE image MATCHING navigation DELAUNAY TRIANGULATION high-dimensional combined feature k-nearest NEIGHBOR
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部