In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The detailed reaction pathway and coke formation mechanism over Pt/metal oxide nanoparticles during the steam reforming of ethanol (SRE) at 300℃ were studied. The catalysts were prepared by incipient wetness impreg...The detailed reaction pathway and coke formation mechanism over Pt/metal oxide nanoparticles during the steam reforming of ethanol (SRE) at 300℃ were studied. The catalysts were prepared by incipient wetness impregnation method and were characterized with CO pulse chemisorption, BET surface measurement, oxygen adsorption, ethanol-TPD, NH3-TPD, and TPO. The SRE activity of the catalysts with steam/ethanol molar ratio of 3/1 was tested using a continuous fixed-bed reactor. Strong interaction between Pt and supports causes lower H2 production temperatures and no C2H4 formation, while weak interaction leads to C2H4 formation and strong bonded CO on Pt particles during ethanol- TPD. H2 production over Pt-based catalysts is mainly resulted from the decomposition and dehydrogenation of ethanol, and decarbonylation of acetaldehyde. Meanwhile, coke can be formed from acetaldehyde, acetone, C2H4 and CO. However, when the interaction between Pt and supports is weak, more coke is formed especially from acetone, C2H4 and CO. When the interaction is strong, no coke formation is observed due to high oxygen storage capacity of the catalyst.展开更多
In order to study the mechanism of selective catalytic reduction of activated coke to remove NO in low-temperature flue gas and provide some theoretical basis for the development of related technologies.The pore sized...In order to study the mechanism of selective catalytic reduction of activated coke to remove NO in low-temperature flue gas and provide some theoretical basis for the development of related technologies.The pore sizedistribution and BET specific surface area of AC were obtain by data analyzing of N2 adsorption/desorption isotherm at -196 ℃ and carbon matrix and surface chemistry of virgin activated coke samples were characterized by acid-base titration and XPS.The process of selective catalytic reduction of activated coke (AC) samples with NH3 as reducing agent was studied in a fixed bed reactor at 150 ℃.The result shows that pore size distribution or BET specific surface of activated cokes have not correlation with denitrification activity for SCR.The NO reduction activities of the activated cokes are apparent to increase with their surface oxygen element content and total amount of acidic sites.Obviously there is good linear relationship between the NH3 adsorption capacity and activity for SCR with linear correlation coefficient 0.943.It has been presented that adsorption of NH3 on acidic functional groups in the edge of large polycyclic aromatic ring of activated coke is key rate controlling step in the SCR heterogeneous catalytic reaction.展开更多
Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activ...Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope(SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry(TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio(mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m^2·g^-1 and 355 m^2·g^-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts(ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition.展开更多
Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adso...Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
An activated semi coke with industrial scale size was prepared by high pressure hydrothermal chemistry activation, HNO 3 oxidation and calcination activation in proper order from Inner Mongolia Zhalainuoer semi coke, ...An activated semi coke with industrial scale size was prepared by high pressure hydrothermal chemistry activation, HNO 3 oxidation and calcination activation in proper order from Inner Mongolia Zhalainuoer semi coke, which is rich in resource and cheap in sale. SO 2 adsorption capacity on this activated semi coke was assessed in the fixed bed in the temperature range of 60—170℃, space velocity range of 500—1300 h -1 , SO 2 concentration of 1000—3000 ppmv, and N 2 as balance. The surface area, elemental and proximate analysis for both raw semi coke and activated semi cokes were measured. The experimental results showed that the activated semi coke has a high adsorption capacity for sulfur dioxide than the untreated semi coke. This may be the result of increase of surface area on activated semi coke and surface oxygen functional groups with basicity characteristics. Comparison to result of FTIR, it is known that group of —C—O—C? ?may be active center of SO 2 catalytic adsorption on activated semi coke.展开更多
In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportio...In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportions of inert content to ten kinds of single coal, changing with active and inert ratio has been investigated. Three kinds of change rule of the MSI of ten kinds of single coal changing with active and inert ratio have been obtained in the research. It has been demonstrated that Gauss curve model is the optimal model to describe the optimum active and inert ratio of different metamorphic grade coals. On this basis, the optimum active and inert ratio of different metamorphic grade coals can be given.展开更多
Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy cons...Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy consumption.Coal-based porous powdered activated coke(PPAC)prepared in the drop-tube reactor was used in this study.The N_(2) adsorption measurements and Fourier transform infrared spectrometer analysis show that PPAC exhibits a developed pore structure and rich functional groups.The experimental results show that with a decrease in adsorption temperature in the range of 50–150℃,the adsorption capacity of SO_(2) increases linearly;meanwhile,the adsorption capacity of H_(2)O increases,resulting in the increase in desorption energy consumption per unit mass of adsorbent.The processes of SO_(2) and H_(2)O desorption were determined by the temperature-programmed desorption test,and the desorption energies for each species were calculated.Considering the energy consumption per unit of desorption and the total amount of adsorbent,the optimal adsorption temperature yielding the minimum total energy consumption of regeneration is calculated.This study systematically demonstrates the effect of adsorption temperature on the adsorption–desorption process,providing a basis for energy saving and emission reduction in desulfurization system design.展开更多
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
文摘The detailed reaction pathway and coke formation mechanism over Pt/metal oxide nanoparticles during the steam reforming of ethanol (SRE) at 300℃ were studied. The catalysts were prepared by incipient wetness impregnation method and were characterized with CO pulse chemisorption, BET surface measurement, oxygen adsorption, ethanol-TPD, NH3-TPD, and TPO. The SRE activity of the catalysts with steam/ethanol molar ratio of 3/1 was tested using a continuous fixed-bed reactor. Strong interaction between Pt and supports causes lower H2 production temperatures and no C2H4 formation, while weak interaction leads to C2H4 formation and strong bonded CO on Pt particles during ethanol- TPD. H2 production over Pt-based catalysts is mainly resulted from the decomposition and dehydrogenation of ethanol, and decarbonylation of acetaldehyde. Meanwhile, coke can be formed from acetaldehyde, acetone, C2H4 and CO. However, when the interaction between Pt and supports is weak, more coke is formed especially from acetone, C2H4 and CO. When the interaction is strong, no coke formation is observed due to high oxygen storage capacity of the catalyst.
基金The authors are grateful to the National Key Research and Development Program of China(NO.2016YFC0204100).
文摘In order to study the mechanism of selective catalytic reduction of activated coke to remove NO in low-temperature flue gas and provide some theoretical basis for the development of related technologies.The pore sizedistribution and BET specific surface area of AC were obtain by data analyzing of N2 adsorption/desorption isotherm at -196 ℃ and carbon matrix and surface chemistry of virgin activated coke samples were characterized by acid-base titration and XPS.The process of selective catalytic reduction of activated coke (AC) samples with NH3 as reducing agent was studied in a fixed bed reactor at 150 ℃.The result shows that pore size distribution or BET specific surface of activated cokes have not correlation with denitrification activity for SCR.The NO reduction activities of the activated cokes are apparent to increase with their surface oxygen element content and total amount of acidic sites.Obviously there is good linear relationship between the NH3 adsorption capacity and activity for SCR with linear correlation coefficient 0.943.It has been presented that adsorption of NH3 on acidic functional groups in the edge of large polycyclic aromatic ring of activated coke is key rate controlling step in the SCR heterogeneous catalytic reaction.
基金Supported by the National Key R&D Plan(2016YFE0131100,2017YFB0603101)the Program for Sanjin Scholars of Shanxi Provincethe Talent Training Program of Shanxi Joint Postgraduate Training Base(2016JD07).
文摘Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope(SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry(TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio(mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m^2·g^-1 and 355 m^2·g^-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts(ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition.
基金Project 50204011 supported by the National Natural Science Foundation of Chinaa part work of the Inno- vation Program for Undergraduate supported by China University of Mining & Technology,Beijing
文摘Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
文摘An activated semi coke with industrial scale size was prepared by high pressure hydrothermal chemistry activation, HNO 3 oxidation and calcination activation in proper order from Inner Mongolia Zhalainuoer semi coke, which is rich in resource and cheap in sale. SO 2 adsorption capacity on this activated semi coke was assessed in the fixed bed in the temperature range of 60—170℃, space velocity range of 500—1300 h -1 , SO 2 concentration of 1000—3000 ppmv, and N 2 as balance. The surface area, elemental and proximate analysis for both raw semi coke and activated semi cokes were measured. The experimental results showed that the activated semi coke has a high adsorption capacity for sulfur dioxide than the untreated semi coke. This may be the result of increase of surface area on activated semi coke and surface oxygen functional groups with basicity characteristics. Comparison to result of FTIR, it is known that group of —C—O—C? ?may be active center of SO 2 catalytic adsorption on activated semi coke.
文摘In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportions of inert content to ten kinds of single coal, changing with active and inert ratio has been investigated. Three kinds of change rule of the MSI of ten kinds of single coal changing with active and inert ratio have been obtained in the research. It has been demonstrated that Gauss curve model is the optimal model to describe the optimum active and inert ratio of different metamorphic grade coals. On this basis, the optimum active and inert ratio of different metamorphic grade coals can be given.
基金supported by the National Key Research and Development Program of China(2017YFB0602901).
文摘Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy consumption.Coal-based porous powdered activated coke(PPAC)prepared in the drop-tube reactor was used in this study.The N_(2) adsorption measurements and Fourier transform infrared spectrometer analysis show that PPAC exhibits a developed pore structure and rich functional groups.The experimental results show that with a decrease in adsorption temperature in the range of 50–150℃,the adsorption capacity of SO_(2) increases linearly;meanwhile,the adsorption capacity of H_(2)O increases,resulting in the increase in desorption energy consumption per unit mass of adsorbent.The processes of SO_(2) and H_(2)O desorption were determined by the temperature-programmed desorption test,and the desorption energies for each species were calculated.Considering the energy consumption per unit of desorption and the total amount of adsorbent,the optimal adsorption temperature yielding the minimum total energy consumption of regeneration is calculated.This study systematically demonstrates the effect of adsorption temperature on the adsorption–desorption process,providing a basis for energy saving and emission reduction in desulfurization system design.