In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quant...Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.展开更多
The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bio...The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of Rl and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of Rl (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from Rl (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.展开更多
Froth flotation is often used for fine-particle separation,but its process efficiency rapidly decreases with decreasing particle size.The efficient separation of ultrafine particles(UFPs)has been a major challenge in ...Froth flotation is often used for fine-particle separation,but its process efficiency rapidly decreases with decreasing particle size.The efficient separation of ultrafine particles(UFPs)has been a major challenge in the mineral processing field for many years.In recent years,the use of surface nanobubbles in the flotation process has been recognized as an effective approach for enhancing the recovery of UFPs.Compared with traditional macrobubbles,nanobubbles possess unique surface and bulk characteristics,and their effects on the UFP flotation behavior have been a topic of intensive research.This review article is focused on the studies on various unique characteristics of nanobubbles and their mechanisms of enhancing the UFP flotation.The purpose of this article is to summarize the major achievements on the two topics and pinpoint future research needs for a better understanding of the fundamentals of surface nanobubble flotation and developing more feasible and efficient processes for fine and UFPs.展开更多
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
文摘Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.
基金supported by the National Natural Science Foundation of China (Grant No. 51878232)Science and technology project of Anhui provincial housing and urban rural development office (No. 2017YF-05)CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China (No. KF201702).
文摘The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of Rl and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of Rl (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from Rl (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.
基金funded by a number of government and industrial grants,particularly the grant from the National Natural Science Foundation of China(No.51804188)。
文摘Froth flotation is often used for fine-particle separation,but its process efficiency rapidly decreases with decreasing particle size.The efficient separation of ultrafine particles(UFPs)has been a major challenge in the mineral processing field for many years.In recent years,the use of surface nanobubbles in the flotation process has been recognized as an effective approach for enhancing the recovery of UFPs.Compared with traditional macrobubbles,nanobubbles possess unique surface and bulk characteristics,and their effects on the UFP flotation behavior have been a topic of intensive research.This review article is focused on the studies on various unique characteristics of nanobubbles and their mechanisms of enhancing the UFP flotation.The purpose of this article is to summarize the major achievements on the two topics and pinpoint future research needs for a better understanding of the fundamentals of surface nanobubble flotation and developing more feasible and efficient processes for fine and UFPs.