In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the allo...A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
We report that the corrosion resistance of a Mg-Sn-based alloy with MgzSn precipitates can be considerably improved by surface modification using pulsed electron beam treatment.The alloy subjected to a pulse electron ...We report that the corrosion resistance of a Mg-Sn-based alloy with MgzSn precipitates can be considerably improved by surface modification using pulsed electron beam treatment.The alloy subjected to a pulse electron beam treatment showed a modified surface layer with a thickness of〜12 μm,appearing more resistant to corrosion attack than the bare surface of the alloy.In 0.6 M NaCl solution,the alloys with and without the surface modification exhibited average corrosion rates of 4.3 and 8.1 mm y^-1,respectively.The improved corrosion resistance was attributed to reduced cathodic activation,resulting from the surficial reduction of relatively noble Mg2Sn precipitates.展开更多
In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase compon...In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions.展开更多
This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the ph...This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.展开更多
Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is near...Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.展开更多
The surface modification of magnesium alloys (AZ31 and AZ91HP) was studied by a high current pulsed electron beam(HCPEB). The results show that the cross-sectional microhardness of treated samples increases not only i...The surface modification of magnesium alloys (AZ31 and AZ91HP) was studied by a high current pulsed electron beam(HCPEB). The results show that the cross-sectional microhardness of treated samples increases not only in the heat affected zone(HAZ), but also beyond HAZ, reaching over 250μm. This is due to the action of quasi-static thermal stress and the shock thermal stress wave with materials, which result in its fast deformation on the surface layer and so increases microhardness. For the AZ91HP alloy, a nearly complete dissolution of the intermetallic phase Mg_ 17Al_ 12 is observed, and a super-saturated solid solution forms on the re-melted surface, which is due to the solute trapping effect during the fast solidification process. Measurements on sliding wear show that wear resistance is improved by approximately 5.6 and 2.4 times for the AZ31 and AZ91HP respectively, as compared with as-received samples.展开更多
The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al ...The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.展开更多
High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material withi...High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material within a short pulse time,coupled thermal and stress processes would lead to the formation of metastalbe microstructure with improved properties.In the present work,HCPEB treatment of 316L stainless steel(SS) was carried out and the microstructural changes in modified surface layer were characterized with optical microscopy,X-ray diffractometry and electron backscatter diffractometry(EBSD) techniques.The corrosion resistance of modified surface was measured in a 5wt.% salt solution.The evolution regularity of surface craters and grain refinement effect,as well as the preferred orientation of(111) crystal plane occurring in the HCPEB treatment under different working parameters were discussed along with their influence on corrosion resistance.展开更多
A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected...A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected by using a fast response Faraday cup at a distance of 2 cm away from a grid anode. The shot to shot variation of the electron beam pulse was less than 10%.展开更多
Nb/Ta multilayer films deposited on Ti6A14V substrate with Nb and Ta monolayer thicknesses of 30 nm, 120 nm, and 240 nm were irradiated by a high current pulse electron beam (HCPEB) to prepare Nb-Ta alloyed layers. ...Nb/Ta multilayer films deposited on Ti6A14V substrate with Nb and Ta monolayer thicknesses of 30 nm, 120 nm, and 240 nm were irradiated by a high current pulse electron beam (HCPEB) to prepare Nb-Ta alloyed layers. The mi- crostructure and the composition of the outmost surface of melted alloyed layers were investigated using a transmission electron microscope (TEM) equipped with an X-ray energy dispersive spectrometer (EDS) attachment. The Ta content of the alloyed surface layer prepared from the monolayer of thickness 30 nm, 120 nm, and 240 nm was- 27.7 at.%, 6.37 at.%, and 0 at.%, respectively. It was found that the Ta content in the alloyed layer plays a dominant role in the microstructure of the films. The hardness and the wear rate of the alloyed layers decrease with the increasing content of Ta in the surface laver.展开更多
The modified microstructure of Al-Si-Pb alloys irradiated by high current electron beam (HCPEB) reveals three distinct regions: a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affecte...The modified microstructure of Al-Si-Pb alloys irradiated by high current electron beam (HCPEB) reveals three distinct regions: a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone, and a transition zone followed by the substrate. The hardness and wear properties of the alloys were significantly improved. To better understand these changes in microstructure and properties, the physical model for the simulation of temperature and quasistatic stress fields was established. Based on experimental investigation and physical models, the temperature field and stress field were simulated for Al-Si-Pb alloy. The starting melting position, largest crater depth, melting layer thickness, and quasistatic stress distribution were obtained. These results reveal the mechanism of crater formation on the surface and improvement of hardness and wear resistance.展开更多
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation...The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.展开更多
Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable mag...Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated.展开更多
The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented...The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.展开更多
In this paper, the changes of surface morphology, microstructure, hardness and corrosion resistance of industrial pure zirconium before and after surface modification by high current pulsed electron beam were discusse...In this paper, the changes of surface morphology, microstructure, hardness and corrosion resistance of industrial pure zirconium before and after surface modification by high current pulsed electron beam were discussed. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM). The experimental results show that sample by high current pulsed electron beam treatment surface melting, martensitic phase transformation occurred, and volcanic crater morphology and fine microstructure in the remelted layer surface;with the increase of number of pulses, after processing the microhardness of the samples also with the increase, 15-pulsed sample microhardness than the original sample increased by 30.9%. Corrosion resistance of samples was studied with the impedance diagram and polarization curve. The electrochemical results show that corrosion resistance of samples by high current pulsed electron beam treatment presents different degrees of change, the 5-pulsed sample in 1 mol HNO<sub>3</sub> solution corrosion of the best, and 15-pulsed sample corrosion resistance is even lower than the original sample. Grain refinement, martensite transformation, dislocation and deformation twins are the main reasons for improving the micro hardness and corrosion resistance of the samples.展开更多
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金Projects(51101177,51401040,51171146,51171216) supported by the National Natural Science Foundation of ChinaProject(CSTC2012JJA245) supported by the Natural Science Foundation of Chongqing,China
文摘A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea govemment(MSIT)(No.2019R1A2C1003905).
文摘We report that the corrosion resistance of a Mg-Sn-based alloy with MgzSn precipitates can be considerably improved by surface modification using pulsed electron beam treatment.The alloy subjected to a pulse electron beam treatment showed a modified surface layer with a thickness of〜12 μm,appearing more resistant to corrosion attack than the bare surface of the alloy.In 0.6 M NaCl solution,the alloys with and without the surface modification exhibited average corrosion rates of 4.3 and 8.1 mm y^-1,respectively.The improved corrosion resistance was attributed to reduced cathodic activation,resulting from the surficial reduction of relatively noble Mg2Sn precipitates.
基金This work was supported by the National Natural Science Foundations of China(No.51271121,51471109).
文摘In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60538010, 10335030 and 10376009), the Science and Technology Commission of Shanghai, China (Grant Nos 05JC14005 and 05SG02), and the Graduate Science and Technology Innovation Foundation of Fudan University, China.
文摘This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.
文摘Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.
文摘The surface modification of magnesium alloys (AZ31 and AZ91HP) was studied by a high current pulsed electron beam(HCPEB). The results show that the cross-sectional microhardness of treated samples increases not only in the heat affected zone(HAZ), but also beyond HAZ, reaching over 250μm. This is due to the action of quasi-static thermal stress and the shock thermal stress wave with materials, which result in its fast deformation on the surface layer and so increases microhardness. For the AZ91HP alloy, a nearly complete dissolution of the intermetallic phase Mg_ 17Al_ 12 is observed, and a super-saturated solid solution forms on the re-melted surface, which is due to the solute trapping effect during the fast solidification process. Measurements on sliding wear show that wear resistance is improved by approximately 5.6 and 2.4 times for the AZ31 and AZ91HP respectively, as compared with as-received samples.
文摘The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.
基金This work is financially supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars and Franco-China Cooperative Research Program between University of Metz and Dalian Uni-versity of Technology(2004)
文摘High current pulsed electron beam(HCPEB) is now developing as a useful tool for surface modification of materials.When concentrated electron flux transferring its energy into the surface layer of target material within a short pulse time,coupled thermal and stress processes would lead to the formation of metastalbe microstructure with improved properties.In the present work,HCPEB treatment of 316L stainless steel(SS) was carried out and the microstructural changes in modified surface layer were characterized with optical microscopy,X-ray diffractometry and electron backscatter diffractometry(EBSD) techniques.The corrosion resistance of modified surface was measured in a 5wt.% salt solution.The evolution regularity of surface craters and grain refinement effect,as well as the preferred orientation of(111) crystal plane occurring in the HCPEB treatment under different working parameters were discussed along with their influence on corrosion resistance.
文摘A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected by using a fast response Faraday cup at a distance of 2 cm away from a grid anode. The shot to shot variation of the electron beam pulse was less than 10%.
基金Project supported by the National Basic Research Program of China (Grant No. 2013CB632305)the Guangdong Province University-Industry Cooperation Project of the Ministry of Education, China (Grant No. 2010B090400444)+1 种基金the Guangdong International Cooperation Projects, China (Grant No. 2010B050900003)the Guangdong Science and Technology Plan Projects, China (Grant No. 2010A070500002)
文摘Nb/Ta multilayer films deposited on Ti6A14V substrate with Nb and Ta monolayer thicknesses of 30 nm, 120 nm, and 240 nm were irradiated by a high current pulse electron beam (HCPEB) to prepare Nb-Ta alloyed layers. The mi- crostructure and the composition of the outmost surface of melted alloyed layers were investigated using a transmission electron microscope (TEM) equipped with an X-ray energy dispersive spectrometer (EDS) attachment. The Ta content of the alloyed surface layer prepared from the monolayer of thickness 30 nm, 120 nm, and 240 nm was- 27.7 at.%, 6.37 at.%, and 0 at.%, respectively. It was found that the Ta content in the alloyed layer plays a dominant role in the microstructure of the films. The hardness and the wear rate of the alloyed layers decrease with the increasing content of Ta in the surface laver.
基金Project(50375063) supported by the National Natural Science Foundation of China
文摘The modified microstructure of Al-Si-Pb alloys irradiated by high current electron beam (HCPEB) reveals three distinct regions: a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone, and a transition zone followed by the substrate. The hardness and wear properties of the alloys were significantly improved. To better understand these changes in microstructure and properties, the physical model for the simulation of temperature and quasistatic stress fields was established. Based on experimental investigation and physical models, the temperature field and stress field were simulated for Al-Si-Pb alloy. The starting melting position, largest crater depth, melting layer thickness, and quasistatic stress distribution were obtained. These results reveal the mechanism of crater formation on the surface and improvement of hardness and wear resistance.
基金Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation
文摘The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.
文摘Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated.
文摘The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.
文摘In this paper, the changes of surface morphology, microstructure, hardness and corrosion resistance of industrial pure zirconium before and after surface modification by high current pulsed electron beam were discussed. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM). The experimental results show that sample by high current pulsed electron beam treatment surface melting, martensitic phase transformation occurred, and volcanic crater morphology and fine microstructure in the remelted layer surface;with the increase of number of pulses, after processing the microhardness of the samples also with the increase, 15-pulsed sample microhardness than the original sample increased by 30.9%. Corrosion resistance of samples was studied with the impedance diagram and polarization curve. The electrochemical results show that corrosion resistance of samples by high current pulsed electron beam treatment presents different degrees of change, the 5-pulsed sample in 1 mol HNO<sub>3</sub> solution corrosion of the best, and 15-pulsed sample corrosion resistance is even lower than the original sample. Grain refinement, martensite transformation, dislocation and deformation twins are the main reasons for improving the micro hardness and corrosion resistance of the samples.