期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Explicit Large Time Stepping with Third-Order Exponential Time Differencing Scheme for Hypersonic Chemical Non-Equilibrium Flow
1
作者 Shiran Dai Songping Wu 《Journal of Applied Mathematics and Physics》 2018年第1期174-182,共9页
In this paper, a third-order exponential time differencing scheme, named ETDRK3, was investigated for large time stepping in the computation of hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was u... In this paper, a third-order exponential time differencing scheme, named ETDRK3, was investigated for large time stepping in the computation of hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was used for the spatial discretization. The efficient implementation of the scheme with diagonalization of Jacobin matrix was established and carried out for the semi-cylindrical around flow. Current observations showed that the numerical results were in good agreement with those obtained by the classical explicit three-stage Runge-Kutta scheme (RK3) and implicit LU scheme. Efficiency assessments promised the effectiveness of the ETDRK3 scheme. The rationality of the application of this scheme was proved by its preferable accuracy and efficiency. 展开更多
关键词 EXPONENTIAL Time INTEGRATOR HYPERSONIC chemical non-equilibrium flow Numerical Efficiency
下载PDF
Receptivity of Mack modes to localized unsteady blowing and suction in a chemical non-equilibrium hypersonic boundary layer
2
作者 Qingjiang Yuan Runjie Song Ming Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第7期1-18,共18页
This paper studies the local receptivity of the Mack-mode instability to localized unsteady blowing and suction(UBS)in a chem-ical non-equilibrium(CNE)hypersonic boundary layer.The five-species CNE model is employed,a... This paper studies the local receptivity of the Mack-mode instability to localized unsteady blowing and suction(UBS)in a chem-ical non-equilibrium(CNE)hypersonic boundary layer.The five-species CNE model is employed,and the receptivity efficiency is formulated by use of the residual theorem.Compared with the results for the calorically perfect gas(CPG)model,we find that the real-gas effect enhances the receptivity efficiency remarkably in the majority of the second-mode frequency band,and the enhancement is mainly attributed to the modification of the base flow due to the CNE effect,which is akin to the cold-wall effect in hypersonic boundary layers.Combined with the destabilizing role of the CNE effect on the Mack second mode,it is concluded that the CNE effect would lead to a greater linearly accumulated perturbation amplitude,implying premature of transition to turbulence in a high-enthalpy hypersonic boundary layer subject to localized perturbations. 展开更多
关键词 chemical non-equilibrium flow Boundary-layer instability HYPERSONIC RECEPTIVITY Transition to turbulence
原文传递
Influence of Metal Material Properties on Heat and Mass Transfer into Thermal Protection Surface with Phenomenological Catalytic Model 被引量:1
3
作者 LI Qin YANG Xiaofeng +1 位作者 DONG Wei DU Yanxia 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期993-1006,共14页
Surface heterogeneous catalysis in a high-enthalpy dissociated environment leads to a remarkable enhancement of aerodynamic heating into the thermal protection surface of hypersonic aircraft.To more accurately predict... Surface heterogeneous catalysis in a high-enthalpy dissociated environment leads to a remarkable enhancement of aerodynamic heating into the thermal protection surface of hypersonic aircraft.To more accurately predict this catalytic heating,a kinetic catalytic model was constructed.This model involved four elementary reactions,the rates of which were determined on mean-field approximation and surface steady-state reaction assumption.By coupling this model into the viscous wall boundary condition of computational fluid dynamics(CFD)solver,the influences of metal material catalytic properties on heat and mass transfer into thermal protection materials were numerically investigated.Numerical results showed that atomic oxygen recombination catalyzed by surface material accounts for a major contribution to aerodynamic heating and thus variation in recombination rates from different materials leads to the significant difference in surface heat fluxes.From a comparative analysis of various materials,the catalytic activity increases from the inert platinum(Pt)to nickel(Ni)and finally to the active copper(Cu).As a result,the catalytic heating on Cu surface was more than twice of that on Pt surface.Further parametrical research revealed that the proper layout of inert material at the nose of aircraft could prevent stagnation catalytic heating from thermal damage by carrying near-wall dissociated atoms from the stagnation zone downstream.The material-relied heterogeneous catalysis mechanism in this study provides some technical support for the thermal protection system design of hypersonic aircraft. 展开更多
关键词 aerodynamic heating chemical non-equilibrium flow heterogeneous catalysis phenomenological model high-temperature interface effects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部