期刊文献+
共找到133,545篇文章
< 1 2 250 >
每页显示 20 50 100
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
1
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
2
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics alloyING
下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
3
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
下载PDF
Adhesion property of AlCrNbSiTi high-entropy alloy coating on zirconium:experimental and theoretical studies
4
作者 Bao‑Liang Zhang Wen‑Guan Liu +5 位作者 Meng‑He Tu Can Fang Yan Liu Yu‑Hui Wang Yong Hu Hui Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期79-91,共13页
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep... Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development. 展开更多
关键词 high-entropy alloy coating Cr coating Adhesion property Scratch test First-principles calculation
下载PDF
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
5
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 high-entropy alloy High-energy milling Antisite disorder AMORPHOUS INTERMETALLIC
下载PDF
Comprehensive insights into recent innovations:Magnesium-inclusive high-entropy alloys
6
作者 Andrii Babenko Ehsan Ghasali +6 位作者 Saleem Raza Kahila Baghchesaraee Ye Cheng Asif Hayat Peng Liu Shuaifei Zhao Yasin Orooji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1311-1345,共35页
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we... This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure. 展开更多
关键词 MAGNESIUM high-entropy alloys CLASSIFICATION Thermodynamic parameters Physical parameters
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
7
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance strengthening mechanisms
下载PDF
Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing γ′ nanoprecipitates
8
作者 冯婷 蒋胜明 +4 位作者 胡潇天 张子骏 黄子敬 董士刚 张建 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期491-500,共10页
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in... A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy. 展开更多
关键词 high-entropy alloys irradiation resistance coherent precipitates helium bubbles
下载PDF
Selective Hydrodeoxygenation of Lignin-Derived Vanillin via Hetero-Structured High-Entropy Alloy/Oxide Catalysts
9
作者 Yan Sun Kaili Liang +9 位作者 Ren Tu Xudong Fan Charles Q.Jia Zhiwen Jia Yingnan Li Hui Yang Enchen Jiang Hanwen Liu Yonggang Yao Xiwei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期202-210,共9页
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit... The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites. 展开更多
关键词 biomass conversion heterogeneous catalysts high-entropy oxide high-entropy alloys lignin pyrolysis
下载PDF
High-entropy alloys in thermoelectric application:A selective review
10
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding 被引量:1
11
作者 Mengxian Li Zhiping Sun +1 位作者 Zhaomin Xu Zhiming Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期50-61,共12页
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi... 21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation. 展开更多
关键词 high entropy alloy laser cladding MICROSTRUCTURE microstructure and properties
下载PDF
High-Entropy Alloys to Activate the Sulfur Cathode for Lithium-Sulfur Batteries 被引量:3
12
作者 Zhenyu Wang Hailun Ge +2 位作者 Sheng Liu Guoran Li Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期40-49,共10页
Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the... Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the enhancement on energy density of lithium-sulfur batteries.Herein,for the first time,Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy is introduced as the core catalytic host to activate the electrochemical performance of the sulfur cathode for lithium-sulfur batteries.It is manifested that Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy nanocrystallites distributed on nitrogen-doped carbon exhibit high electrocatalytic activity toward the conversion of solid sulfur to solid discharged products across soluble intermediate lithium polysulfides.In particular,benefiting from the accelerated kinetics by high-entropy alloy nanocrystallites and synergistic adsorption by nitrogen-doped carbon,the cathode exhibits high reversible capacity of 1079.5 mAh g_(-cathode)^(-1)(high utilization of 89.4%)with the whole cathode as active material,instead of sulfur element.Moreover,under both lean electrolyte(3μmg^(-1))and ultrahigh sulfur loading(27.0 mg cm^(-2))condition,the high discharge capacity of 868.2 mAh g_(-cathode)^(-1)can be still achieved for the sulfur cathode.This strategy opens up a new path to explore catalytic host materials for enhancing the utilization of sulfur in the whole cathode for lithium-sulfur batteries. 展开更多
关键词 catalytic host electrochemical performance high-entropy alloy lithium–sulfur batteries sulfur cathode
下载PDF
A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications 被引量:1
13
作者 Yixing Wan Yanhai Cheng +5 位作者 Yongxiong Chen Zhibin Zhang Yanan Liu Haijun Gong Baolong Shen Xiubing Liang 《Engineering》 SCIE EI CAS CSCD 2023年第11期110-120,共11页
Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the micr... Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications. 展开更多
关键词 Refractory high-entropy alloy High temperature Mechanical property MICROSTRUCTURE Strengthening mechanism
下载PDF
Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks
14
作者 Yonghui Zhou Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期118-124,I0005,共8页
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi... High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN. 展开更多
关键词 Uncertainty quantification high-entropy alloys Bayesian neural networks Energy prediction Structure screening
下载PDF
On the Superconductivity in High-Entropy Alloy (NbTa)1-X(HfZrTi)X
15
作者 Snehadri B. Ota 《Journal of Modern Physics》 CAS 2023年第4期445-449,共5页
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X<... The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge. 展开更多
关键词 high-entropy alloys Disordered Metals Strong-Coupled Superconductivity LOCALIZATION Cocktail Effect
下载PDF
Structure and properties of FeCoNiCrCu_(0.5)Al_x high-entropy alloy 被引量:10
16
作者 李宝玉 彭坤 +3 位作者 胡爱平 周灵平 朱家俊 李德意 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期735-741,共7页
Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase ... Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy. 展开更多
关键词 high-entropy alloy MICROSTRUCTURE heat treatment stable phase HARDNESS corrosion resistance
下载PDF
Oxidation behavior of high-entropy alloys Al_xCoCrFeNi(x=0.15, 0.4) in supercritical water and comparison with HR3C steel 被引量:7
17
作者 刘宜萱 程从前 +3 位作者 尚建路 王锐 李朋 赵杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1341-1351,共11页
The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spine... The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides. 展开更多
关键词 high-entropy alloy high temperature oxidation POLARIZATION electrochemical impedance spectroscopy(EIS)
下载PDF
Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys 被引量:15
18
作者 Tian-dang Huang Shi-yu Wu +3 位作者 Hui Jiang Yi-ping Lu Tong-min Wang Ting-ju Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1318-1325,共8页
This study aimed to investigate the microstructure and mechanical properties of TixZrVNb(x=1,1.5,2)refractory high-entropy alloys at room and elevated temperatures.The TiZrVNb alloy consisted of the body-centered cubi... This study aimed to investigate the microstructure and mechanical properties of TixZrVNb(x=1,1.5,2)refractory high-entropy alloys at room and elevated temperatures.The TiZrVNb alloy consisted of the body-centered cubic(bcc)matrix with a small amount of V2Zr phase.The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure.At room temperature,the tensile ductility of the as-cast alloys increased from 3.5%to 12.3%with the increase in the Ti content.The TixZrVNb alloys exhibited high yield strength at 600°C,and the ultimate yield strength was more than 900 MPa.Softening occurred at 800°C,but the ultimate yield strength could still exceed 200 MPa.Moreover,the TixZrVNb alloys displayed low densities but high specific yield strengths(SYSs).The lowest density of TixZrVNb alloys was only 6.12 g/cm^3,but the SYS could reach about 180 MPa·cm^3·g^−1,which is better than those of most reported high-entropy alloys(HEAs). 展开更多
关键词 high-entropy alloys mechanical properties low density elevated temperature
下载PDF
Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering 被引量:12
19
作者 Chun-duo Dai Yu Fu +1 位作者 Jia-xiang Guo Cui-wei Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1388-1397,共10页
The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and ele... The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests.The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase.High substrate temperature promoted the densification of the coating,and the pitting resistance and protective ability of the coating in 3.5wt%NaCl solution was thus improved.When the deposition time was prolonged at 500℃,the thickness of the coating remarkably increased.Meanwhile,the pitting resistance improved as the deposition time increased from 1 to 3 h;however,further improvement could not be obtained for the coating sputtered for 5 h.Overall,the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500℃for 3 h exceeds those of most of the reported high-entropy alloy coatings. 展开更多
关键词 high-entropy alloy coating magnetron sputtering MICROSTRUCTURE CORROSION
下载PDF
Displacive transformation as pathway to prevent micro-cracks induced by thermal stress in additively manufactured strong and ductile high-entropy alloys 被引量:9
20
作者 Rui-di LI Peng-da NIU +1 位作者 Tie-chui YUAN Zhi-ming LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1059-1073,共15页
The micro-cracking behaviors of two high-entropy alloys(HEAs) of the FeMnCoCrNi family prepared by selective laser melting were systematically studied. Residual stresses were also analyzed by X-ray diffraction techniq... The micro-cracking behaviors of two high-entropy alloys(HEAs) of the FeMnCoCrNi family prepared by selective laser melting were systematically studied. Residual stresses were also analyzed by X-ray diffraction technique. Results show that the equiatomic FeMnCoCrNi HEAs with a relatively stable single-phase face-centered cubic(FCC) structure suffered from micro-cracking with residual tensile stress after laser melting. In contrast, the metastable non-equiatomic Fe MnCoCr HEAs with reduced stacking fault energy are free of micro-cracks with residual compressive stress at various volumetric energy densities(VEDs). The displacive transformation from the FCC matrix to the hexagonal close-packed(HCP) phase during cooling prevents the micro-cracking via consuming thermal stress related internal energy. Further, the displacive transformation during tensile deformation contributes to the higher strength and ductility of the metastable dual-phase HEA compared to that of the stable single-phase HEA. These findings provide useful guidance for the design of strong, ductile, and crack-free alloys for additive manufacturing by tuning phase stability. 展开更多
关键词 selective laser melting high-entropy alloys phase transformation MICRO-CRACKING residual stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部