Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging ampli...Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.展开更多
The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on ...The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on the analysis of influencing factors to the weight selection, this paper develops a new method to choose the weights based on the measurement of confidence in frequency domain. Results show that it is more precise and robust than other methods, and can make up for the defect of sub-estimate to the slope of least squares method.展开更多
The de-coherence phenomena such as Low-SNR radar signal, shadows and layover caused by topography, etc. , causing phase data discontinuity, makes the result of unwrapping phase inaccuracy or even completely wrong. Bas...The de-coherence phenomena such as Low-SNR radar signal, shadows and layover caused by topography, etc. , causing phase data discontinuity, makes the result of unwrapping phase inaccuracy or even completely wrong. Based on the analysis of influencing factors to weight choice, this thesis develops a new method to choose the weights based on the measure of the confidence in the frequency domain. Experiments show that it could overcome the defect of sub-estimate to the slope of least squares method very well, which has a better rationale, stability and performance.展开更多
基金financially supported by Important National Science and Technology Specific Projects of China(Grant No. 2011ZX05023-005-005)
文摘Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.
基金supported by the National Natural Science Foundation(40874001)Key Laboratory of Surveying and Mapping Technology on Island and Reef,State Bureau of Surveying and Mapping(2010A01)
文摘The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on the analysis of influencing factors to the weight selection, this paper develops a new method to choose the weights based on the measurement of confidence in frequency domain. Results show that it is more precise and robust than other methods, and can make up for the defect of sub-estimate to the slope of least squares method.
基金supported by the National Natural Science Fundation of China(40874001)Key Laboratory of Surveying and Mapping Technology on Island and Reef,National Administration of Surveying,Mapping and Geoinformation(2010A01)
文摘The de-coherence phenomena such as Low-SNR radar signal, shadows and layover caused by topography, etc. , causing phase data discontinuity, makes the result of unwrapping phase inaccuracy or even completely wrong. Based on the analysis of influencing factors to weight choice, this thesis develops a new method to choose the weights based on the measure of the confidence in the frequency domain. Experiments show that it could overcome the defect of sub-estimate to the slope of least squares method very well, which has a better rationale, stability and performance.