期刊文献+
共找到3,154篇文章
< 1 2 158 >
每页显示 20 50 100
Effect of surface modification on the radiation stability of diamond ohmic contacts
1
作者 牟恋希 赵上熳 +7 位作者 王鹏 原晓芦 刘金龙 朱志甫 陈良贤 魏俊俊 欧阳晓平 李成明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期444-448,共5页
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio... The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc. 展开更多
关键词 single crystal diamond ohmic contact surface modification electron radiation
下载PDF
Frictional contact analysis of a rigid solid with periodic surface sliding on the thermoelectric material
2
作者 Yali ZHANG Yueting ZHOU Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期179-196,共18页
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical... Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads. 展开更多
关键词 wavy surface periodic contact thermoelectric(TE)material Hilbert integral kernel
下载PDF
Contact Angle Prediction Model for Underwater Oleophobic Surfaces Based on Multifractal Theory
3
作者 Jiang Huayi You Yanzhen +4 位作者 Hu Juan Tian Dongmei Qi Hongyuan Sun Nana Liu Mei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期37-48,共12页
Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and ... Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and underwateroleophobic surfaces based on polyvinylidene fluoride (PVDF) using a chemical modification method, and the fractaldimension and multifractal spectrum are used to quantitatively characterize the microscopic morphology. A new contactangle prediction model for underwater oleophobic surfaces is established. The results show that the fractal dimension ofthe PVDF surface first increases and then decreases with the reaction time. The uniformity characterized by the multifractalspectrum was generally consistent with scanning electron microscope observations. The contact angle of water droplets onthe PVDF surface is negatively correlated with the fractal dimension, and oil droplets in water are positively correlated.When the fractal dimension is 2.0975, the new contact angle prediction model has higher prediction accuracy. Themaximum and minimum relative deviations of the contact angle between the theoretical and measured data are 18.20%and 0.72%, respectively. For water ring transportation, the larger the fractal dimension and spectral width of the materialsurface, the smaller the absolute value of the spectral difference, the stronger the hydrophilic and oleophobic properties, andthe better the water ring transportation stability. 展开更多
关键词 contact angle hydrophilic-oleophobic surface polyvinylidene fluoride MULTIFRACTAL prediction model
下载PDF
Surface form inspection with contact coordinate measurement:a review 被引量:4
4
作者 Yijun Shen Jieji Ren +3 位作者 Nuodi Huang Yang Zhang Xinquan Zhang Limin Zhu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期119-147,共29页
Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with ... Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy,robustness,and universality.In this paper,the existing research in the contact measurement field is systematically reviewed.First,different configurations of the measuring machines are introduced in detail,which may have influence on the corresponding sampling and inspection path generation criteria.Then,the entire inspection pipeline is divided into two stages,namely the pre-inspection and post-inspection stages.The typical methods of each sub-stage are systematically overviewed and classified,including sampling,accessibility analysis,inspection path generation,probe tip radius compensation,surface reconstruction,and uncertainty analysis.Apart from those classical research,the applications of the emerging deep learning technique in some specific tasks of measurement are introduced.Furthermore,some potential and promising trends are provided for future investigation. 展开更多
关键词 freeform surface form inspection contact measurement coordinate measurement on-machine inspection
下载PDF
Fractal Prediction Model of Thermal Contact Conductance of Rough Surfaces 被引量:11
5
作者 JI Cuicui ZHU Hua JIANG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期128-136,共9页
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode... The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces. 展开更多
关键词 rough surface FRACTAL thermal contact conductance prediction model
下载PDF
THIRD-ORDER LOCAL CONTACT AND APPLICATION IN 5-AXIS MACHINING OF SCULPTURED SURFACES 被引量:8
6
作者 LIU Guran 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期265-267,共3页
In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the su... In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the surfaces is researched. Through analysis the contact degree of the intersection line of the cutter and the surfaces is known. In comparison to previous studies, the theory is more restricted and accurate by going beyond the second-order parameters into the third-order, suiting both the primary surfaces of analytical geometry and the computer-generated surfaces of the computation geometry. It has definite procedure of calculation, and the equations are easy to solve. The thought process is very clear: First, suppose that there is a surface of third-order, the coefficients of which are arbitrary; Then find out the best posture of the circle in order that the circle and the surface will most closely contact with each other at the origin position; Finally, develop the surface into a third-order surface at every point of machining and employ the results mentioned above to find the best cutter posture at every point of machining. As a result, the equations are easy to solve, and the concept is clear. 展开更多
关键词 surfacE contact NC machining
下载PDF
Friction Characteristics of Nanoscale Sliding Contacts between Multi-Asperity Tips and Textured Surfaces 被引量:3
7
作者 TONG Ruiting LIU Geng LIU Tianxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1109-1117,共9页
Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw... Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces. 展开更多
关键词 friction characteristics multi-asperity tips textured surfaces nanoscale sliding contacts multiscale method
下载PDF
Three-Dimensional Conjugate Tooth Surface Design and Contact Analysis of Harmonic Drive with Double-Circular-Arc Tooth Profle
8
作者 Chaosheng Song Feihong Zhu +1 位作者 Xinzi Li Xuesong Du 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期248-265,共18页
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element ... A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance. 展开更多
关键词 Three-dimensional conjugate tooth surface Coning deformation Double-circular-arc tooth profle Harmonic Drive contact characteristics
下载PDF
Vessel fusion tracking with a dual-frequency high-frequency surface wave radar and calibrated by an automatic identification system 被引量:3
9
作者 ZHANG Hui LIU Yongxin +1 位作者 JI Yonggang WANG Linglin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第7期131-140,共10页
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh... High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data. 展开更多
关键词 vessel tracking high-frequency surface wave radar automatic identification system joint probabilistic data association unscented Kalman filter
下载PDF
Two Dimensional Nanoscale Reciprocating Sliding Contacts of Textured Surfaces 被引量:4
10
作者 TONG Ruiting LIU Geng LIU Tianxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期531-538,共8页
Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current... Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts. 展开更多
关键词 nanoscale reciprocating sliding contacts textured surface multiscale method
下载PDF
High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition 被引量:5
11
作者 郭红雨 吕元杰 +7 位作者 顾国栋 敦少博 房玉龙 张志荣 谭鑫 宋旭波 周幸叶 冯志红 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期166-168,共3页
Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s... Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved. 展开更多
关键词 GAN high-frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic contacts by Metal-Organic Chemical Vapor Deposition
下载PDF
Nanoscale Reciprocating Sliding Contacts of Textured Surfaces:Influence of Structure Parameters and Indentation Depth
12
作者 Rui-Ting Tong Geng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期168-181,共14页
Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surface... Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear. 展开更多
关键词 NANOSCALE Reciprocating sliding contacts Textured surface Structure parameters Indentation depth
下载PDF
Evolution of surfaces and mechanisms of contact electrification between metals and polymers
13
作者 Lin-Feng Wang Yi Dong +3 位作者 Min-Hao Hu Jing Tao Jin Li Zhen-Dong Dai 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期572-579,共8页
Contact electrification(CE)is a pretty common phenomenon,but still is poorly understood.The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity.In th... Contact electrification(CE)is a pretty common phenomenon,but still is poorly understood.The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity.In this paper,the CE between metals and polymers is systematically studied,which shows the evolution of surfaces is accompanied by variations of CE outputs.The variations of CE charge quantity are closely related to the creep and deformation of the polymer and metal surfaces.Then the relationship between CE and polymer structures is put forward,which is essentially determined by the electronegativity of elements and the functional groups in the polymers.The effects of load and contact frequency on the CE process and outputs are also investigated,indicating the increase of CE charge quantity with load and frequency.Material transfer from polymer to metal is observed during CE while electrons transfer from metal to polymer,both of which are believed to have an influence on each other.The findings advance our understanding of the mechanism of CE between metal and polymers,and provides insights into the performance of CE-based application in various conditions,which sheds light on the design and optimization of CE-based energy harvest and self-powered sensing devices. 展开更多
关键词 contact electrification surface evolution material structures material transfer
下载PDF
Water contact angles on charged surfaces in aerosols
14
作者 Yu-Tian Shen Ting Lin +3 位作者 Zhen-Ze Yang Yong-Feng Huang Ji-Yu Xu Sheng Meng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期569-574,共6页
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface char... Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments. 展开更多
关键词 water contact angle charged surface AEROSOLS
下载PDF
The Extremely Efficient New Model in Milling of Complicated Surfaces in 5-Axis Machining for 3-Dimensional Contact
15
作者 Yi Lou Huran Liu Bo Tan 《World Journal of Engineering and Technology》 2018年第3期625-630,共6页
Although most of the 5-axis NC milling machine tool producers declare that their machine poses the function of 5-axis simultaneous machining, and most of the commercialized CAD/CAM software was reported it can support... Although most of the 5-axis NC milling machine tool producers declare that their machine poses the function of 5-axis simultaneous machining, and most of the commercialized CAD/CAM software was reported it can support the 5-axis simultaneous machining, but there are very few analyses about their machining efficiency. I hope that the reader would be interested to know how the new method is?highly effective. The paper did a good job in motivating the problem mentioned here. The model of this paper is extremely efficient ant. This is a highly effective way of surface machining. There are also some areas that need improving. The mathematic presentation is not clear, but much more pages are needed, if the authors like to make it clearer. In the resent paper “The Extreme Efficiency of the New Model in Milling of Complicated Surfaces” we discussed the extreme efficiency of the new model in milling of complicated surfaces in 5-axis machining for 2-dimensional contact. While this time let’s discuss the same problem but much complicated one, 5-axis machining for 3-dimensional contact. As the research activities conducted by Dr. Liu Huran opened a new field and wide horizons in 5-axis machining of sculptured complicated surfaces using mathematical theories, and according to the interesting results presented in paper, Dr. Liu Huran is strongly encouraged if he can submit a similar work but this time with a new title that corresponds to the purpose [1]. 展开更多
关键词 surface contact NC MACHINING
下载PDF
Determination of Contact Angle Hysteresis on Polyamide Surfaces
16
作者 Marcela Bachurova Jakub Wiener 《Journal of Chemistry and Chemical Engineering》 2012年第1期27-30,共4页
The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range... The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range of values between two extremes: the advancing and the receding contact angles. The difference between the advancing and the receding contact angles is conventionally called contact angle hysteresis. Knowledge of contact angle hysteresis is essential to understand surface wettability and control surface wetting behavior. The wettability can be affected, for example, by the roughness of the solid surface. In our work, textile is used as macroscopic roughness surfaces, and smooth plate surface is used as well to determine contact angle hysteresis. The advancing and receding contact angles are measured on polyamide materials. 展开更多
关键词 Advancing contact angles receding contact angle surface energy contact angle hysteresis.
下载PDF
NUMERICAL APPROACH TO DETERMINING INSTANTANEOUS CONTACT REGION FOR CONJUGATE SURFACES
17
作者 WANG Taiyong LI Jingcai HE Gaiyun FAN Shengbo HAO Yongjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期15-17,共3页
According to the defect of traditional method of determining instantaneous contact regions for conjugate surfaces, a numerical approach to the determination is proposed. A local coordinate system is built by using the... According to the defect of traditional method of determining instantaneous contact regions for conjugate surfaces, a numerical approach to the determination is proposed. A local coordinate system is built by using the surface unit tangent and unit normal at the contact point. Considering that the gap forming the boundary of instantaneous contact region in the direction of the common normal vectors is given, a system of nonlinear equations is built to find the instantaneous contact boundary in local coordinate system, a modified Powell's hybrid algorithm of finite-difference approximation to the Jacobian used to solve the system. The new method simplifies the task of determining instantaneous contact regions without calculating curvatm'e and relative curvature. The validity of the proposed approach is verified by an example of hypoid gears. 展开更多
关键词 Tooth contact analysis Conjugate surfaces Numerical solutions
下载PDF
Investigating the Bioburden of “Neglected” Hospital Low Contact Surfaces
18
作者 Sixtus A. Okafor Innocent C. Ekuma +4 位作者 Chioma C. Okey-Mbata Uche L. Ezeamaku Afoma L. Okafor Felicity N. Arukalam Ebere O. Eziefuna 《Advances in Microbiology》 2022年第5期316-326,共11页
Microbes inhabit every surface, reproduce, and if undisturbed, could form biofilm. Hospital contact surfaces have been reported to play a major role in the spread of healthcare-acquired infections (HAIs). Most studies... Microbes inhabit every surface, reproduce, and if undisturbed, could form biofilm. Hospital contact surfaces have been reported to play a major role in the spread of healthcare-acquired infections (HAIs). Most studies on these surfaces as a route for the spread of nosocomial infections have focused on the high-contact surfaces. There is a paucity of information on the bioburden of “neglected” low-contact surfaces such as bedside bible, ward television, and ward clock, etc. This study was carried out to investigate the bioburden of “neglected” low-contact hospital surfaces and compare it with that of the high-contact surfaces. Using a sterile swab stick moistened in normal saline, we collected 400 samples from contact surfaces of 20 randomly selected hospitals in Owerri, southeast in Nigeria, and by standard microbiological methods and with reference to standard identification manuals, microbial species were isolated and characterized. The results show that the mean of the bioburden in cfu/square swabbed surface of these “neglected” low-contact surfaces is significantly higher (p = 0.005) than that of the high-contact surfaces which may be a result of target hygienic cleaning, with attention on the high-contact surfaces and the low-contact surfaces are often “neglected”. This result gives an insight into the continued prevalence of hospital-acquired infections as these “neglected” low-contact surfaces continue to serve as a reservoir for pathogenic microbes and a source of continued microbial contamination of hospital surfaces. It therefore calls for a revamp of existing hospital cleaning protocols and redesigning of cleaning regimes. 展开更多
关键词 Cleaning contact INFECTIONS Microbiota and surfaces
下载PDF
Microbial Evaluation of Meat Contact Surfaces in Red Meat Abattoirs of Bauchi State, North-Eastern Nigeria
19
作者 Shehu Abdul Qadir Zailani Mohammed Bello +2 位作者 Mashood Abiola Raji Junaidu Kabir Suleiman Maitala Yahuza 《Open Journal of Medical Microbiology》 2016年第1期3-8,共6页
Microbial quality (MQ) of meat contact surfaces (MCS) of six major abattoirs was evaluated with a subsequent further isolation and identification of E. coli O157. Two hundred and forty 240 swab samples (SS) from MCS t... Microbial quality (MQ) of meat contact surfaces (MCS) of six major abattoirs was evaluated with a subsequent further isolation and identification of E. coli O157. Two hundred and forty 240 swab samples (SS) from MCS that include cutting equipment, floor, tables and transport media were collected for total aerobic plate count and isolation of E. coli O157. Results of the SS indicated a mean value 7.1 ± 0.3 log<sub>10</sub> cfu/cm<sup>2</sup>. A minimum value of 6.4 ± 0.6 log<sub>10</sub> cfu/cm<sup>2</sup> was recorded oncutting instrument from Ningi abattoir, while a maximum value of 7.8 ± 0.3 log<sub>10</sub> cfu/cm<sup>2</sup> was obtained from tables at Darazo abattoir. Only 3 (1.2%) of the 240 SS of the MCS were positive for E. coli O157 using the latex agglutination kit (Difco, Michigan, USA). 展开更多
关键词 ABATTOIRS E. coli O157 Meat contact surfaces Microbial Quality
下载PDF
Surface energies and appearances of commonly exposed surfaces of scheelite crystal 被引量:12
20
作者 高志勇 孙伟 +1 位作者 胡岳华 刘晓文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2147-2152,共6页
Surface energies of five different surfaces of scheelite crystal were calculated using density functional theory (DFT). Based on the calculation results, the predominantly exposed surfaces in the morphologies of sch... Surface energies of five different surfaces of scheelite crystal were calculated using density functional theory (DFT). Based on the calculation results, the predominantly exposed surfaces in the morphologies of scheelite crystals were predicted. {112} and {001} cleavage surfaces and {112} crystal surface are the commonly exposed surfaces, which are consistent with both previous literatures and the present experimental observations based on the XRD. Cleavage generates more easily along {112} surfaces than along {001} surfaces due to their different interlayer spacings. The surface roughness and appearance of different predominantly exposed surfaces were then investigated using AFM. The roughness of smooth {112} cleavage surface is the lowest among these three surfaces. On {001} cleavage surface, terraces are flat and separated by steps of about 10 nm in height. Subsequently, contact angle measurements were adopted to evaluate the wettability and surface energies of these surfaces. The surface energies evaluated directly correspond to the trend calculated with DFT. 展开更多
关键词 SCHEELITE surface energy CLEAVAGE contact angle WETTABILITY
下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部