In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i...In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.展开更多
Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry...Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.展开更多
Modeling and investigation of HF electromagnetic heating in induction devices with unclosed magnetic circuit has allowed to optimize heating speed in local zones of formation of soldering connections and to improve th...Modeling and investigation of HF electromagnetic heating in induction devices with unclosed magnetic circuit has allowed to optimize heating speed in local zones of formation of soldering connections and to improve their quality due to joint action of superficial effects and electromagnetic forces.For all magnetic materials is nonlinear decrease in heating power depending on frequency of HF.Installed the optimal parameters of HF heating for soldering electronics modules by inductor with open-ended magnetic conductor.展开更多
Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff i...Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.展开更多
In this paper, we proposed 10 Gb/s transmission using 4-channel polymer waveguides on the optical electronic printed circuit board. It was simulated by the ray tracing method for tolerance study of optical interconnec...In this paper, we proposed 10 Gb/s transmission using 4-channel polymer waveguides on the optical electronic printed circuit board. It was simulated by the ray tracing method for tolerance study of optical interconnection and fabrication. In order for easy fabrication and high position accuracy, the polymer waveguides were forming silver coated 45° reflective mirrors by dicing method and e-beam deposition for 90° light beam turning. The coupling loss was demonstrated in different polishing grit sizes. The optical interconnection in board-embed 4-channel flexible waveguides was demonstrated with a low propagation loss of 0.1 dB/cm and a clear eye diagram at 2.5 Gb/s data rate per channel.展开更多
By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware ...By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.展开更多
This research concerns on (TID), (DD) and (SEE) effects also high energy particles’ effects on electronic properties of silicon. It investigates the silicon electronic properties exposed to these particles using a la...This research concerns on (TID), (DD) and (SEE) effects also high energy particles’ effects on electronic properties of silicon. It investigates the silicon electronic properties exposed to these particles using a laboratory neutron radiation sources. Some Pieces of a silicon wafer were under neutron radiation at different times and the electrical properties of each one was illustrated by plate resistance measurement and also the strength of the current voltage was simulated by Fluka and MCNP software. Based on these results, authorized limit of silicon tolerance was obtained against high energy neutrons radiation. We put them in the electric furnace under thermal recovery to overcome the unusual behavior of irradiated samples.展开更多
Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man ...Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man disease detection and healing, and artificial brain evolutionusl. Here, we report the first development of human plasma-based amplifier circuit in the dis- crete as well as integrated circuit (IC) configuration mode. Electrolytes in the human blood contain an enormous number of charge carriers such as positive and negative molecule/atom ions, which are electri- cally conducting media and therefore can be utilized for developing electronic circuit components and their application circuits. These electronic circuits obvi- ously have very high application impact potential towards bio-medical engineering and medical science and technology.展开更多
The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some p...The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.展开更多
Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,do...Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,double layered nanotube,multi layered nanotube etc.In this paper usage of carbon nanotubes in semiconductor devices such as nanomaterials,molecular dynamics of nanomaterials,heterojunctions using carbon nanotubes,diodes and Graphene Field Effect Transistor(GFET),its characteristics and data analysis are discussed.The major application of carbon nanotubes in electronic circuits is not limiting to improves the electrical and thermal conductivity due to its high stretchability feature and they also have a long life span and better durability over traditional electronic circuit’s materials.展开更多
In this paper, two new electronically tunable filter configurations are proposed. The proposed filters operate current-mode (CM), voltage-mode (VM), transimpedance-mode (TIM) and transadmittance-mode (TAM). The first ...In this paper, two new electronically tunable filter configurations are proposed. The proposed filters operate current-mode (CM), voltage-mode (VM), transimpedance-mode (TIM) and transadmittance-mode (TAM). The first configuration realizes second-order VM band-pass and TAM high-pass filter characteristics from the same configuration. The second one realizes second-order TIM band-pass and CM low-pass filter characteristics from the same configuration. They also use minimum number of electronic components (two capacitors and one active component namely;current controlled current difference transconductance amplifier). The workability of the proposed structures has been demonstrated by simulation results.展开更多
Wearable electronics are becoming a critical technology in the field of health monitoring.Continuous in situ monitoring of physiological information is of great value for preventing and treating high-incidence disease...Wearable electronics are becoming a critical technology in the field of health monitoring.Continuous in situ monitoring of physiological information is of great value for preventing and treating high-incidence diseases such as cardiovascular diseases,gastrointestinal diseases,dermatological issues,and neonatal conditions[1–4].However,most flexible wearable sensing devices inevitably need to be connected to extra acquisition equipment and integrated circuits(IC)[5],which do not adequately meet the needs for comfortable wear.Ideal flexible wearable electronics require stretchable and lightweight backend circuits,and related research is still in its early stages[6–8].展开更多
A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of ...A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of the new fractional 6D model is presented and analyzed.The basic properties of this model are studied and its chaotic attractors,dissipative feature,symmetry,equilibrium points,Lyapunov Exponents are investigated.The new dynamics of the 6D fractional model is numerically simulated using Matlab software.In addition,utilizing the graph theory tools certain structural characteristics are calculated.An electrical circuit is built to implement the new 5.4 fractional order 6D model.Finally,an active fractional order controller is proposed to control the new model at different fractional orders.The chaos of the new model is very useful and can be used to produce random keys for data encryption.展开更多
In this work, a Fe-based nanocrystalline microwire of 20 mm in length and 25 μm in diameter was placed in the center of a 316 stainless steel pipe. The pipe was 500 μm in diameter and a little shorter than the micro...In this work, a Fe-based nanocrystalline microwire of 20 mm in length and 25 μm in diameter was placed in the center of a 316 stainless steel pipe. The pipe was 500 μm in diameter and a little shorter than the microwire. A series of voltages were applied on the pipe to study the influence of the electrical field on the Giant-Magneto-Impedance(GMI) effect of the microwire. Experimental results showed that the electronic field between the wire and the pipe reduced the hysteresis of the GMI effect. The results were explained based on equivalent circuit and eddy current consumptions analysis.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
An Al Ga N/Ga N high electron mobility transistor(HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency(RF) readout circuit is designed and the HEMT device is asse...An Al Ga N/Ga N high electron mobility transistor(HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency(RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage V g, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector.展开更多
基金supported by the 2022 Project for Improving the Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities(Grant No.2022KY0209).
文摘In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.
文摘Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.
文摘Modeling and investigation of HF electromagnetic heating in induction devices with unclosed magnetic circuit has allowed to optimize heating speed in local zones of formation of soldering connections and to improve their quality due to joint action of superficial effects and electromagnetic forces.For all magnetic materials is nonlinear decrease in heating power depending on frequency of HF.Installed the optimal parameters of HF heating for soldering electronics modules by inductor with open-ended magnetic conductor.
文摘Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.
文摘In this paper, we proposed 10 Gb/s transmission using 4-channel polymer waveguides on the optical electronic printed circuit board. It was simulated by the ray tracing method for tolerance study of optical interconnection and fabrication. In order for easy fabrication and high position accuracy, the polymer waveguides were forming silver coated 45° reflective mirrors by dicing method and e-beam deposition for 90° light beam turning. The coupling loss was demonstrated in different polishing grit sizes. The optical interconnection in board-embed 4-channel flexible waveguides was demonstrated with a low propagation loss of 0.1 dB/cm and a clear eye diagram at 2.5 Gb/s data rate per channel.
文摘By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.
文摘This research concerns on (TID), (DD) and (SEE) effects also high energy particles’ effects on electronic properties of silicon. It investigates the silicon electronic properties exposed to these particles using a laboratory neutron radiation sources. Some Pieces of a silicon wafer were under neutron radiation at different times and the electrical properties of each one was illustrated by plate resistance measurement and also the strength of the current voltage was simulated by Fluka and MCNP software. Based on these results, authorized limit of silicon tolerance was obtained against high energy neutrons radiation. We put them in the electric furnace under thermal recovery to overcome the unusual behavior of irradiated samples.
文摘Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man disease detection and healing, and artificial brain evolutionusl. Here, we report the first development of human plasma-based amplifier circuit in the dis- crete as well as integrated circuit (IC) configuration mode. Electrolytes in the human blood contain an enormous number of charge carriers such as positive and negative molecule/atom ions, which are electri- cally conducting media and therefore can be utilized for developing electronic circuit components and their application circuits. These electronic circuits obvi- ously have very high application impact potential towards bio-medical engineering and medical science and technology.
文摘The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.
文摘Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,double layered nanotube,multi layered nanotube etc.In this paper usage of carbon nanotubes in semiconductor devices such as nanomaterials,molecular dynamics of nanomaterials,heterojunctions using carbon nanotubes,diodes and Graphene Field Effect Transistor(GFET),its characteristics and data analysis are discussed.The major application of carbon nanotubes in electronic circuits is not limiting to improves the electrical and thermal conductivity due to its high stretchability feature and they also have a long life span and better durability over traditional electronic circuit’s materials.
文摘In this paper, two new electronically tunable filter configurations are proposed. The proposed filters operate current-mode (CM), voltage-mode (VM), transimpedance-mode (TIM) and transadmittance-mode (TAM). The first configuration realizes second-order VM band-pass and TAM high-pass filter characteristics from the same configuration. The second one realizes second-order TIM band-pass and CM low-pass filter characteristics from the same configuration. They also use minimum number of electronic components (two capacitors and one active component namely;current controlled current difference transconductance amplifier). The workability of the proposed structures has been demonstrated by simulation results.
基金financially supported by the National Natural Science Foundation of China(52125201)the Beijing Municipal Science and Technology(Z221100002722015)。
文摘Wearable electronics are becoming a critical technology in the field of health monitoring.Continuous in situ monitoring of physiological information is of great value for preventing and treating high-incidence diseases such as cardiovascular diseases,gastrointestinal diseases,dermatological issues,and neonatal conditions[1–4].However,most flexible wearable sensing devices inevitably need to be connected to extra acquisition equipment and integrated circuits(IC)[5],which do not adequately meet the needs for comfortable wear.Ideal flexible wearable electronics require stretchable and lightweight backend circuits,and related research is still in its early stages[6–8].
基金support and funding of Research Center for Advanced Material Science(RCAMS)at King Khalid Uni-versity through Grant No.RCAMS/KKU/009-21.
文摘A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of the new fractional 6D model is presented and analyzed.The basic properties of this model are studied and its chaotic attractors,dissipative feature,symmetry,equilibrium points,Lyapunov Exponents are investigated.The new dynamics of the 6D fractional model is numerically simulated using Matlab software.In addition,utilizing the graph theory tools certain structural characteristics are calculated.An electrical circuit is built to implement the new 5.4 fractional order 6D model.Finally,an active fractional order controller is proposed to control the new model at different fractional orders.The chaos of the new model is very useful and can be used to produce random keys for data encryption.
文摘In this work, a Fe-based nanocrystalline microwire of 20 mm in length and 25 μm in diameter was placed in the center of a 316 stainless steel pipe. The pipe was 500 μm in diameter and a little shorter than the microwire. A series of voltages were applied on the pipe to study the influence of the electrical field on the Giant-Magneto-Impedance(GMI) effect of the microwire. Experimental results showed that the electronic field between the wire and the pipe reduced the hysteresis of the GMI effect. The results were explained based on equivalent circuit and eddy current consumptions analysis.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
基金Project supported by the National Natural Science Foundation of China(Grant No.61107093)the Suzhou Science and Technology Project,China(Grant No.ZXG2012024)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2012243)
文摘An Al Ga N/Ga N high electron mobility transistor(HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency(RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage V g, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector.