期刊文献+
共找到5,529篇文章
< 1 2 250 >
每页显示 20 50 100
High-frequency supercapacitors with phosphorus-doped Ketjen black
1
作者 Qing Jin Mahima Khandelwal Woong Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期464-474,I0010,共12页
Compact supercapacitors(SCs)have attracted attention for their great potential to replace bulky aluminum electrolytic capacitors(AECs)in alternating current(AC)line filtering applications.Herein,the fabrication of a h... Compact supercapacitors(SCs)have attracted attention for their great potential to replace bulky aluminum electrolytic capacitors(AECs)in alternating current(AC)line filtering applications.Herein,the fabrication of a high-frequency SC is reported using Ketjen black(KB)nanoparticles doped with phosphorus(P)to achieve a high areal capacitance of up to 2.26 mF cm^(-2)along with a high-rate capability,with a phase angle of-80.2°at 120 Hz.The high performance of the phosphorus-doped KB(designated PKB)SC with a 6 M KOH aqueous electrolyte is associated with its increased surface wettability and additional capacitive sites provided by the P-doping.Density functional theory(DFT)calculations further indicate that the P-doping enhances the interactions between the electrolyte ions and the carbon surface,thus leading to an improved electrochemical performance.These results suggest that the P-doped carbonbased SC could be highly favored in replacing conventional AECs in various high-frequency electronic devices. 展开更多
关键词 Phosphorus doping Frequency response WETTABILITY supercapacitor AC line filtering DFT calculation
下载PDF
Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors 被引量:4
2
作者 Nazifah Islam Juliusz Warzywoda Zhaoyang Fan 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期77-84,共8页
High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3 D edge-oriented graphene(EOG)w... High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3 D edge-oriented graphene(EOG)was grown encircling carbon nanofiber(CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at-45° phase angle was found to be as high as 22 and 8.5 k Hz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 m F cm^(-2) for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promisingpotential of this technology for compact power supply design and other applications. 展开更多
关键词 high-frequency supercapacitor Kilohertz supercapacitor Vertical graphene Carbon nanofiber AC filtering
下载PDF
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode
3
作者 FAN Ya-feng YI Zong-lin +6 位作者 ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期1015-1026,共12页
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me... Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors. 展开更多
关键词 high-frequency supercapacitors Carbon electrodes Doped nitrogen species Adsorption energy DESCRIPTOR
下载PDF
Cotton pads-derived carbon materials/reduced graphene oxide modified with polypyrrole for electrode of supercapacitors 被引量:1
4
作者 Ofelia MArias-Pinedo Elvis OLopez +5 位作者 Ivonne EMonje RSoria-Martinez Antony Bazan-Aguilar Clemente Alfredo Luyo Caycho Gabriel Angel Planes Angelica Maria Baena-Moncada 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期41-53,共13页
This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applicati... This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy. 展开更多
关键词 supercapacitors Cotton pads-derived carbon fibers rGO PPy TD-DFT
下载PDF
Recent Research Progress of Paper-Based Supercapacitors Based on Cellulose 被引量:1
5
作者 Chuanyin Xiong Tianxu Wang +2 位作者 Jing Han zhao Zhang Yonghao Ni 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期345-373,共29页
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo... In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices. 展开更多
关键词 CELLULOSE electrochemical performance FLEXIBILITY paper-based supercapacitor porous
下载PDF
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:1
6
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites supercapacitors
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
7
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
8
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials supercapacitor
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
9
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
One-Step Scalable Fabrication of Nitrogen and Chlorine Co-doped Graphene by Electrochemical Exfoliation for High-Performance Supercapacitors
10
作者 Qian Li Hu Zheng +4 位作者 Binbin Liu Tianzhen Jian Wenqing Ma Caixia Xu Kai Wang 《Transactions of Tianjin University》 EI CAS 2024年第5期448-458,共11页
The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation... The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors. 展开更多
关键词 GRAPHENE Electrochemical exfoliation supercapacitor NITROGEN CHLORINE
下载PDF
Kinematic deformation and intensity assessment of the 2021 Maduo M_(S)7.4 earthquake in Qinghai revealed by high-frequency GNSS
11
作者 Yu Li Yuebing Wang +2 位作者 Lijiang Zhao Hongbo Shi Pingping Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第3期230-240,共11页
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance... Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future. 展开更多
关键词 Maduo earthquake high-frequency GNSS Kinematic deformation Seismic intensity
下载PDF
Dynamic Response of Foundations during Startup of High-Frequency Tunnel Equipment
12
作者 Dawei Ruan Mingwei Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期821-844,共24页
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ... The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel. 展开更多
关键词 Tunnel equipment high-frequency units startup conditions transient dynamics dynamic response foundation design
下载PDF
In-depth analysis of VARTM-based solid-state supercapacitors utilizing CNT-dispersed cobalt-bismuth-samarium ternary hydroxide on woven carbon fiber for enhanced energy storage
13
作者 Fouzia Mashkoor Mohd Shoeb +2 位作者 Hongjun Jeong Mohammad Naved Khan Changyoon Jeong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期498-512,I0010,共16页
Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combi... Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices. 展开更多
关键词 Ternary hydroxide Carbon nanotube Synergistic effect VARTM supercapacitor
下载PDF
Phase reconfiguration of heterogeneous CoFeS/CoNiS nanoparticles for superior battery-type supercapacitors
14
作者 Lina Ma Fan Li +7 位作者 Min Zhou Jidong Dong Hao Luo Wei Zhang Wenchao Zhao Xinliang Li Zaixing Jiang Yudong Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期217-225,共9页
Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,h... Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields. 展开更多
关键词 In-situ reconfiguration Heterogeneous design Battery-type supercapacitors Superior performance Sulphide
下载PDF
Review of the Analysis and Suppression for High-frequency Oscillations of the Grid-connected Wind Power Generation System
15
作者 Bo Pang Qi Si +4 位作者 Pan Jiang Kai Liao Xiaojuan Zhu Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期127-142,共16页
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is... High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping. 展开更多
关键词 Damping method high-frequency oscillation STABILITY Wind power generation
下载PDF
Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors:Enhancement and mechanism
16
作者 Yuntao Xiao Xinfang Zhang +2 位作者 Can Wang Jinsong Rao Yuxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期35-58,共24页
The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy s... The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage.Unfortunately,the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity,which seriously limit the application of Mg-based materials in supercapacitors.Herein,in this review,more than 70 research papers published in recent 10 years were collected and analyzed.Some representative research works were selected,and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed.The effects of various regulative strategies(such as constructing nanostructures,synthesizing composites,defect engineering,and binder-free synthesis,etc.)on the electrochemical performance and their mechanism are demonstrated using spinelstructured MgX_(2)O_(4) and layered structured Mg-X-LDHs as examples.In addition,the application of magnesium oxide and magnesium hydroxide in electrode materials,MXene's solid spacers and hard templates are introduced.Finally,the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed. 展开更多
关键词 supercapacitor Electrochemical energy storage Mg-based materials
下载PDF
Enhancing MXene-based supercapacitors:Role of synthesis and 3D architectures
17
作者 Wen Siong Poh Wen Jie Yiang +2 位作者 Wee-Jun Ong Pau Loke Show Chuan Yi Foo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期1-26,共26页
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i... MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted. 展开更多
关键词 MXene 3D architectures Synthesis design supercapacitor Energy storage
下载PDF
Emerging perovskite materials for supercapacitors:Structure,synthesis,modification,advanced characterization,theoretical calculation and electrochemical performance
18
作者 Yuehua Qian Qingqing Ruan +1 位作者 Mengda Xue Lingyun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期41-70,I0003,共31页
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r... As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction. 展开更多
关键词 PEROVSKITE Modification engineering Oxygen vacancy Theoretical calculation methodology supercapacitor
下载PDF
Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors
19
作者 Anki Reddy Mule Bhimanaboina Ramulu +2 位作者 Shaik Junied Arbaz Anand Kurakula Jae Su Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期579-591,I0013,共14页
Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,s... Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices. 展开更多
关键词 Current collectors Redox-active silver Transition metal-hydroxides Electrochemical performance Hybrid supercapacitor
下载PDF
Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism
20
作者 Shihao Feng Qin Ouyang +4 位作者 Jing Huang Xilin Zhang Zhongjun Ma Kun Liang Qing Huang 《Journal of Renewable Materials》 EI CAS 2024年第7期1207-1218,共12页
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d... Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors. 展开更多
关键词 LIGNIN porous carbon KOH activation mechanism supercapacitor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部