This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent L...The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent LET is tested,the sensitive areas of the SET effects are identified in voltage follower application mode of LM124J, and the mechanism is initially analyzed. The transient amplitude and duration of HCPL5231 at various equivalent LET are examined,and the SET cross-section is measured. The results of our test and heavy ion experimental data coincide closely,indicating that a pulsed laser test facility is a valid tool for single event effect evaluation.展开更多
A series of slow drain current recovery transients at different gate biases after a short-term stress are observed in an AIGaN/GaN HEMT. As the variation of the time constants of the transients is small, the working t...A series of slow drain current recovery transients at different gate biases after a short-term stress are observed in an AIGaN/GaN HEMT. As the variation of the time constants of the transients is small, the working trap is determined to be electronic. A numerical simulation verifies this conclusion and reproduces the measured transients. The electron traps at different spatial positions in the device-on the ungated surface of the AIGaN layer,in the AIGaN barrier, and in the GaN layer are considered;corresponding behaviors in the stress and the transients are discussed;and for the simulated transients, agreement with and deviation from the measured transients are explained. Based on this discussion, we suggest that the measured transients are caused by the combined effects of a deep surface trap and a bulk trap in the GaN layer.展开更多
The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation ...The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation of motion via the Newtonian approach, with the differential quadrature method used to discretize the curved tube model in the spatial domain. And the nonlinear dynamic motion equation is obtained. The numerical analysis shows that, the final steady states are sensitive to the initial system conditions in a large parameter region of the fluid speed. This phenomenon of chaotic transients is infrequent for fluid conveying tubes.展开更多
The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstruct...The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.展开更多
An investigation of the characteristics of flowrate transientswithin slug flow was conducted in a large- scale outdoor testingfacility. The test section consisted of a 378 m long, 7.62 cmdiameter stainless steel pipe....An investigation of the characteristics of flowrate transientswithin slug flow was conducted in a large- scale outdoor testingfacility. The test section consisted of a 378 m long, 7.62 cmdiameter stainless steel pipe. Air and water were used as the testfluids. The response to a change of flowrate of either phase or twophases Was measured using a series of pressure transducers anddifferential pressure transducers. An increase or decrease In gasflowrate caused a pressure overshoot above the value at new steadystate or led to a pressure undershoot To form a temporary stratifiedflow.展开更多
We follow the premise that most intermediate luminosity optical transients (ILOTs) are powered by rapid mass accretion onto a main sequence star, and study the effects of jets launched by an accretion disk. The disk...We follow the premise that most intermediate luminosity optical transients (ILOTs) are powered by rapid mass accretion onto a main sequence star, and study the effects of jets launched by an accretion disk. The disk is formed due to large specific angular momentum of the accreted mass. The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk, and therefore reduce and shorten the mass accretion process. We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism (JFM). The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.展开更多
The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the incre...The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the increase of sintering temperature offers a reduced capacitive effect from 0.460 nF to 0.321 nF.Furthermore,the grain sizes of varistors were varied from 6.8μm to 9.8μm.The consequence of such smaller grain sizes provided a better voltage gradient of about 895 V/mm for the disc sintered at 900°C and fallen drastically to 410 V/mm for the sample sintered at 1050°C.In addition,there was an increase of non-linearity index to a maximum value of 36.0 and reduced leakage current of 0.026 mA/cm2.However,the density of the varistor decreased with an increase of temperature from 5.41 g/cm3 to 5.24 g/cm3.With this base,the influence of varistor capacitance and high voltage gradient were scrutinized and it led an improved transition speed of the varistor assembly from non-conduction to conduction mode during intruding nanosecond transients.展开更多
A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the ...A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the converter during load transients,and to achieve near-optimal transient responses with simple PWM control only.Moreover,a hybrid scheme using a digital linear regulator with automatic transient detection and seamless loop transition is proposed to further improve the transient responses.By monitoring the output voltage of the compensator instead of the output voltage of the converter,the proposed hybrid scheme can reduce undershoot and overshoot effectively with good noise immunity and without interrupting the PWM loop.The converter was fabricated in a 0.13μm standard CMOS process using 3.3 V devices.With an input voltage of 3.3 V,the measured peak efficiencies at the output voltages of 2.4,1.8,and 1.2 V are 90.7%,88%,and 83.6%,respectively.With a load step of 1.25 A and rise and fall times of 2 ns,the measured 1%settling times were 220 and 230 ns,with undershoot and overshoot with PWM control of 72 and 76 mV,respectively.They were further reduced to 36 and 38 mV by using the proposed hybrid scheme,and 1%settling times were also reduced to 125 ns.展开更多
We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon ...We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon (LOCOS) and deep trench isolation (DTI). The experimental results are discussed in detail and it is demonstrated that a SiGe HBT with the structure of LOCOS is more sensitive than the DTI SiGe HBT in the SET. Because of the limitation of the DTI structure, the charge collection of diffusion in the DTI SiGe HBT is less than that of the LOCOS SiGe HBT. The SET sensitive area of the LOCOS SiGe HBT is located in the eollector-substrate (C/S) junction, while the sensitive area of the DTI SiGe HBT is located near to the collector electrodes.展开更多
The hydraulic and thermal transients in pipeline flow were studied. The method of characteristics for hydraulic transient analysis of batch transport of pipeline flow had been improved. The thermal transient equation,...The hydraulic and thermal transients in pipeline flow were studied. The method of characteristics for hydraulic transient analysis of batch transport of pipeline flow had been improved. The thermal transient equation, in which the term with v 3 was involved, had been inferred, while the corresponding method of characteristics was constructed. The double method of characteristics, which can be used to study the coherent hydraulic-thermal transients of batch transport of pipeline flow, was developed.展开更多
Distribution transformers operating in modern system grids or in industrial networks are subjected to many switching transients,which may occur due to routine operations,network reconfigurations or as reaction on prot...Distribution transformers operating in modern system grids or in industrial networks are subjected to many switching transients,which may occur due to routine operations,network reconfigurations or as reaction on protection signals.Depending on the network configuration and parameters,such events may lead to external overvoltages and result in additional stresses on the insulation system.This paper presents the influence of a series choke on damping of switching transients in distribution transformers.The impact of the choke is assessed by both amplitude and rise time reduction.The suppression of the transient rise time is shown for a test configuration involving distribution transformers connected to low loss cable lines and a medium voltage breaker.Such phenomena are especially typical for industrial networks where switching operations are very frequent.Both simulation and experiment results are given.Simulation results as well as measurement results confirmed that switching events can lead to high dU/dt and in consequence,can have adverse impacts on insulation system.Voltage escalation during switching event is strongly related with system conditions.The results obtained for presented mitigation method are promising and indicate significant dU/dt reduction as well as number of ignitions and voltage peak value.The protection of distribution transformers with a series choke is a new approach dedicated to environments prone to the occurrence of transients with high steepness.Experimental results show that the application of serial choke with suitable parameters realizes the reduction of dU/dt at the machines terminal from 24 kV/μs to 5 kV/μs,as well as the reduction of voltage peak value from 10 kV to 5 kV.The number of ignitions is also reduced.展开更多
Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and h...Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and heavy iron exhibit the same waveform and charge collection time except for the amplitude of peak current. Different laser energies and voltage biases under heavy ion irradiation also have impact on current transient, whereas the waveform remains unchanged. The position-correlated current transients suggest that the nature of the current transient is controlled by the behavior of the C/S junction.展开更多
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow,the calculating method on flow transients of two-phase flow is developed by means of characteristicmethod. As one example, a gas-liquid flow t...From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow,the calculating method on flow transients of two-phase flow is developed by means of characteristicmethod. As one example, a gas-liquid flow transient is calculated and it agrees well with theexperimental result. It is shown that the method is satisfactory for engineering demand.展开更多
An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the cr...An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the critical velocity.The laminar friction resistance and the turbulent friction resistance are considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of the valve closing process are simulated using the model.A more reasonable attenuation of hydraulic transients is obtained.The accurate attenuation is more distinct than that obtained from the traditional mathematical model.The research shows that the hydraulic transient is a type of energy waves,and its attenuation is caused by the friction resistance.The laminar friction resistance is more important than the turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise the turbulent friction resistance is more important.The laminar friction resistance is important in the attenuation of hydraulic transients for the closing process.Thus,it is significant to consider the different resistances separately to obtain more accurate attenuation of hydraulic transients.展开更多
This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect ...This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.展开更多
The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the...The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the simulation based on single-machine infinite-bus system and draw some conclusions. The time consumption of the simulation using EMTDC is much longer than the simulation using BPA under the same length of time. The results of BPA are close to those of EMTDC under steady conditions. The fundamental frequency component of the EMTDC results seems closer to the BPA results than its original value, but they still away from completely consistent. In this simulation of single-machine infinite-bus system, the transient stability results of BPA and EMTDC are close, but the results of BPA are apt to be more conservative. All the conclusions above have a certain reference value to both hybrid simulation and comprehensive analysis method in the study of the AC/DC digital simulation of large power grid.展开更多
The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event cha...The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event charge collection is composed of diffusion, drift, and the parasitic bipolar effect, while for PMOSs in the special layout, the parasitic bipolar junction transistor cannot turn on. Heavy ion experimental results show that PMOSs without parasitic bipolar amplification have a 21.4% decrease in the average SET pulse width and roughly a 40.2% reduction in the SET cross-section.展开更多
In contrast to Fourier transform, wavelet transform is especially suitable for transient analysis because of its time frequency characteristics with automatically adjusted window lengths. Research shows that wavelet...In contrast to Fourier transform, wavelet transform is especially suitable for transient analysis because of its time frequency characteristics with automatically adjusted window lengths. Research shows that wavelet transform is one of the most powerful tools for power system transient analysis. The basic ideas of wavelet transform are presented in the paper together with several power system applications. It is clear that wavelet transform has some clear advantages over other transforms in detecting, analyzing, and identifying various types of power system transients.展开更多
As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing...As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal–oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies.展开更多
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.
文摘The single event transient effects of the operational amplifier LM124J and the optocoupler HCPL 5231 are investigated by a pulsed laser test facility. The relation of transient pulse shape to pulsed laser equivalent LET is tested,the sensitive areas of the SET effects are identified in voltage follower application mode of LM124J, and the mechanism is initially analyzed. The transient amplitude and duration of HCPL5231 at various equivalent LET are examined,and the SET cross-section is measured. The results of our test and heavy ion experimental data coincide closely,indicating that a pulsed laser test facility is a valid tool for single event effect evaluation.
文摘A series of slow drain current recovery transients at different gate biases after a short-term stress are observed in an AIGaN/GaN HEMT. As the variation of the time constants of the transients is small, the working trap is determined to be electronic. A numerical simulation verifies this conclusion and reproduces the measured transients. The electron traps at different spatial positions in the device-on the ungated surface of the AIGaN layer,in the AIGaN barrier, and in the GaN layer are considered;corresponding behaviors in the stress and the transients are discussed;and for the simulated transients, agreement with and deviation from the measured transients are explained. Based on this discussion, we suggest that the measured transients are caused by the combined effects of a deep surface trap and a bulk trap in the GaN layer.
基金Project supported by the National Natural Science Foundation of China (No. 10272051).
文摘The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation of motion via the Newtonian approach, with the differential quadrature method used to discretize the curved tube model in the spatial domain. And the nonlinear dynamic motion equation is obtained. The numerical analysis shows that, the final steady states are sensitive to the initial system conditions in a large parameter region of the fluid speed. This phenomenon of chaotic transients is infrequent for fluid conveying tubes.
基金Project (2016YFB1200602-11) supported by National Key R&D Plan of China
文摘The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.
基金Supported by the National Natural Science Foundation of China (No.59995462) and the National Science Foundation of China for distinguished Young Scientists (No. 59725616).
文摘An investigation of the characteristics of flowrate transientswithin slug flow was conducted in a large- scale outdoor testingfacility. The test section consisted of a 378 m long, 7.62 cmdiameter stainless steel pipe. Air and water were used as the testfluids. The response to a change of flowrate of either phase or twophases Was measured using a series of pressure transducers anddifferential pressure transducers. An increase or decrease In gasflowrate caused a pressure overshoot above the value at new steadystate or led to a pressure undershoot To form a temporary stratifiedflow.
基金support provided by the National Science Foundation through grant AST1109394
文摘We follow the premise that most intermediate luminosity optical transients (ILOTs) are powered by rapid mass accretion onto a main sequence star, and study the effects of jets launched by an accretion disk. The disk is formed due to large specific angular momentum of the accreted mass. The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk, and therefore reduce and shorten the mass accretion process. We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism (JFM). The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.
文摘The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the increase of sintering temperature offers a reduced capacitive effect from 0.460 nF to 0.321 nF.Furthermore,the grain sizes of varistors were varied from 6.8μm to 9.8μm.The consequence of such smaller grain sizes provided a better voltage gradient of about 895 V/mm for the disc sintered at 900°C and fallen drastically to 410 V/mm for the sample sintered at 1050°C.In addition,there was an increase of non-linearity index to a maximum value of 36.0 and reduced leakage current of 0.026 mA/cm2.However,the density of the varistor decreased with an increase of temperature from 5.41 g/cm3 to 5.24 g/cm3.With this base,the influence of varistor capacitance and high voltage gradient were scrutinized and it led an improved transition speed of the varistor assembly from non-conduction to conduction mode during intruding nanosecond transients.
文摘A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the converter during load transients,and to achieve near-optimal transient responses with simple PWM control only.Moreover,a hybrid scheme using a digital linear regulator with automatic transient detection and seamless loop transition is proposed to further improve the transient responses.By monitoring the output voltage of the compensator instead of the output voltage of the converter,the proposed hybrid scheme can reduce undershoot and overshoot effectively with good noise immunity and without interrupting the PWM loop.The converter was fabricated in a 0.13μm standard CMOS process using 3.3 V devices.With an input voltage of 3.3 V,the measured peak efficiencies at the output voltages of 2.4,1.8,and 1.2 V are 90.7%,88%,and 83.6%,respectively.With a load step of 1.25 A and rise and fall times of 2 ns,the measured 1%settling times were 220 and 230 ns,with undershoot and overshoot with PWM control of 72 and 76 mV,respectively.They were further reduced to 36 and 38 mV by using the proposed hybrid scheme,and 1%settling times were also reduced to 125 ns.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274106
文摘We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon (LOCOS) and deep trench isolation (DTI). The experimental results are discussed in detail and it is demonstrated that a SiGe HBT with the structure of LOCOS is more sensitive than the DTI SiGe HBT in the SET. Because of the limitation of the DTI structure, the charge collection of diffusion in the DTI SiGe HBT is less than that of the LOCOS SiGe HBT. The SET sensitive area of the LOCOS SiGe HBT is located in the eollector-substrate (C/S) junction, while the sensitive area of the DTI SiGe HBT is located near to the collector electrodes.
文摘The hydraulic and thermal transients in pipeline flow were studied. The method of characteristics for hydraulic transient analysis of batch transport of pipeline flow had been improved. The thermal transient equation, in which the term with v 3 was involved, had been inferred, while the corresponding method of characteristics was constructed. The double method of characteristics, which can be used to study the coherent hydraulic-thermal transients of batch transport of pipeline flow, was developed.
文摘Distribution transformers operating in modern system grids or in industrial networks are subjected to many switching transients,which may occur due to routine operations,network reconfigurations or as reaction on protection signals.Depending on the network configuration and parameters,such events may lead to external overvoltages and result in additional stresses on the insulation system.This paper presents the influence of a series choke on damping of switching transients in distribution transformers.The impact of the choke is assessed by both amplitude and rise time reduction.The suppression of the transient rise time is shown for a test configuration involving distribution transformers connected to low loss cable lines and a medium voltage breaker.Such phenomena are especially typical for industrial networks where switching operations are very frequent.Both simulation and experiment results are given.Simulation results as well as measurement results confirmed that switching events can lead to high dU/dt and in consequence,can have adverse impacts on insulation system.Voltage escalation during switching event is strongly related with system conditions.The results obtained for presented mitigation method are promising and indicate significant dU/dt reduction as well as number of ignitions and voltage peak value.The protection of distribution transformers with a series choke is a new approach dedicated to environments prone to the occurrence of transients with high steepness.Experimental results show that the application of serial choke with suitable parameters realizes the reduction of dU/dt at the machines terminal from 24 kV/μs to 5 kV/μs,as well as the reduction of voltage peak value from 10 kV to 5 kV.The number of ignitions is also reduced.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274106 and 61574171
文摘Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and heavy iron exhibit the same waveform and charge collection time except for the amplitude of peak current. Different laser energies and voltage biases under heavy ion irradiation also have impact on current transient, whereas the waveform remains unchanged. The position-correlated current transients suggest that the nature of the current transient is controlled by the behavior of the C/S junction.
文摘From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow,the calculating method on flow transients of two-phase flow is developed by means of characteristicmethod. As one example, a gas-liquid flow transient is calculated and it agrees well with theexperimental result. It is shown that the method is satisfactory for engineering demand.
基金supported by the National Natural Science Foundation of China (No 50709029)the Key Special Program on the Science and Technology of China for the Pollution Control and Treatment of Water Bodies (No 2009ZX07424-004)
文摘An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the critical velocity.The laminar friction resistance and the turbulent friction resistance are considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of the valve closing process are simulated using the model.A more reasonable attenuation of hydraulic transients is obtained.The accurate attenuation is more distinct than that obtained from the traditional mathematical model.The research shows that the hydraulic transient is a type of energy waves,and its attenuation is caused by the friction resistance.The laminar friction resistance is more important than the turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise the turbulent friction resistance is more important.The laminar friction resistance is important in the attenuation of hydraulic transients for the closing process.Thus,it is significant to consider the different resistances separately to obtain more accurate attenuation of hydraulic transients.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Innovation Foundation for Postgraduate of Hunan Province,China (Grant No. CX2011B026)
文摘This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.
文摘The paper firstly interprets the differences between electromechanical transients program BPA and electromagnetic transients program EMTDC in the field of principle, model and algorithm. Then the authors carry out the simulation based on single-machine infinite-bus system and draw some conclusions. The time consumption of the simulation using EMTDC is much longer than the simulation using BPA under the same length of time. The results of BPA are close to those of EMTDC under steady conditions. The fundamental frequency component of the EMTDC results seems closer to the BPA results than its original value, but they still away from completely consistent. In this simulation of single-machine infinite-bus system, the transient stability results of BPA and EMTDC are close, but the results of BPA are apt to be more conservative. All the conclusions above have a certain reference value to both hybrid simulation and comprehensive analysis method in the study of the AC/DC digital simulation of large power grid.
基金supported by the National Natural Science Foundation of China(Grant No.61376109)
文摘The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event charge collection is composed of diffusion, drift, and the parasitic bipolar effect, while for PMOSs in the special layout, the parasitic bipolar junction transistor cannot turn on. Heavy ion experimental results show that PMOSs without parasitic bipolar amplification have a 21.4% decrease in the average SET pulse width and roughly a 40.2% reduction in the SET cross-section.
文摘In contrast to Fourier transform, wavelet transform is especially suitable for transient analysis because of its time frequency characteristics with automatically adjusted window lengths. Research shows that wavelet transform is one of the most powerful tools for power system transient analysis. The basic ideas of wavelet transform are presented in the paper together with several power system applications. It is clear that wavelet transform has some clear advantages over other transforms in detecting, analyzing, and identifying various types of power system transients.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61133007)the National Natural Science Foundation of China (Grant Nos. 61006070 and 61076025)
文摘As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal–oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies.