Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray ...This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.展开更多
In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode ...Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.展开更多
Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral ra...Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and tempora...We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.展开更多
Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were adde...Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector's photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels(PN(10000)). The extraction results are incomplete because a portion of the samplerocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude.In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.展开更多
To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography us...To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.展开更多
Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiograp...Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.展开更多
Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances i...Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.展开更多
The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Re...The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Results show that equiaxed dendrites, including exotic 'butterfly-shaped' dendrite morphology, dominate at high cooling rate (〉1 K/s). When the cooling rate decreases in the range of 0.5-1 K/s, the equiaxed-to-columnar transition takes place, and solute segregates at the center of two long dendrite arms (LDA) of the 'butterfly-shaped' dendrite. When the cooling rate is lower than 0.3 K/s, directional solidification occurs and the columnar dendritic growth direction gradually rotates from the crystalline axis to the thermal gradient direction with an increase in cooling rate. Meanwhile, interface moves faster but the dendrite arm spacing decreases. Floating, collision and rotation of dendrites under convection were also studied in this work.2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilaye...High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilayer design of Co/C and W/C stacks to obtain a high reflection efficiency of the Ti characteristic lines while meeting the precise alignment requirement at the Cu Kα line.The alignment method based on dual simulated balls was proposed herein,which simultaneously realizes an accurate indication of the center field of view and the backlighter position.The optical design,multilayer coatings,and alignment method of the microscope and the experimental result of Ti flash radiography of the Au-coned CH shell target on the SG-Ⅱ Update are described.展开更多
The prediction of the fragment velocity distribution of a cylindrical cased charge with end caps is one of the key issues to assess the damage efficiency of the warhead. However, limited work has been conducted to pre...The prediction of the fragment velocity distribution of a cylindrical cased charge with end caps is one of the key issues to assess the damage efficiency of the warhead. However, limited work has been conducted to predict the fragment velocity distributions along the axis of cylindrical cased charges with end caps. This paper presents a study of the velocity distribution of fragments caused by the explosion of a cylindrical cased charge with end caps. The fragment velocity distribution and the end cap velocity were determined by an X-ray radiography method, and the axial fragment distribution was determined by witness plates. It was found that the velocities of fragments, especially near the edge, were increased when the end caps were added, and the position of maximum velocity is closer to the non-detonation end. The fragment velocities were increased, and the fragment projection range was decreased with the increase of the thickness of the end cap. A formula for fragment velocity distributions of a cylindrical cased charge with end caps, which is based on Huang’s formula, was proposed by the theoretical analysis and data fitting and validated experimentally. The results indicate that the proposed formula is accurate in predicting the fragment velocity distribution along the axis of a cylindrical cased charge with end caps detonated at one end.展开更多
We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pu...We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.展开更多
AIM: To explore the optimal low dose of MSCT in orbital trauma examination. METHODS: Sixty transverse images of the fracture layer were selected. Low-dose images acquired at 30, 70, 100, 140, 170, and 200 milliampere ...AIM: To explore the optimal low dose of MSCT in orbital trauma examination. METHODS: Sixty transverse images of the fracture layer were selected. Low-dose images acquired at 30, 70, 100, 140, 170, and 200 milliampere (mA) were simulated by adding noise to the image space using software. After assessing the images according to the conditions of image quality and fracture, we found the optimal tube current that met diagnostic requirements and then applied it to clinical use. The CT Dose Index volume (CTDIvol), dose length product (DLP) and effective dose (ED) were recorded. The image quality was classified as good, fairly good, ordinary, poor, or very poor according to image level, noise, anatomic structure and whether the diagnostic requirements were met or not. The rank-sum test was used to perform statistical analysis on the ranked data The Chi-square test was used for the numerical data. RESULTS: Under the scan conditions of a conventional dose of 300 mA, 60 cases of orbital fracture, 38 cases of orbital emphysema, 25 cases of ocular damage, and 3 cases of intraorbital foreign body were demonstrated in the images of the 60 orbital trauma patients. Among the low dose simulated images, the image quality difference of the different doses was of statistical significance (chi(2) =15.678, P =0.016). When the dose was lowered to 70 mA, the above mentioned clinical signs were still clear and diagnostic, however the image quality assessment results indicated that 2 cases were good, 16 cases were fairly good, and 42 cases were ordinary, poor or very poor. When the simulated dose tube current was 100mA, the image quality assessment results were 18 cases good, 34 cases fairly good, and 8 cases ordinary, poor and very poor; compared with the conventional dose, there was no statistical significance (P>0.05). When using a 100 mA tube current to examine 40 cases of orbital trauma patients in the clinic, the acquired image quality was 10 cases good, 26 cases fairly good and 4 cases ordinary, without any cases of poor or very poor. The CTDIvol, DLP and ED were 20.72mGy, 124.97mGy.cm and 0.26mSv, respectively, while the CTDIvol, DLP and ED were 62.53mGy, 375.18mGy.GTtl and 0.86mSv, respectively, when using a conventional dose of 300mA. Compared with the tube current of 100mA for scanning, the ED declined 70%. CONCLUSION: When conducting an MSCT scan for orbital trauma, the acquired images using the 100 mA tube current can meet the clinical diagnostic requirements, and the radiation dose to the patients can be decreased.展开更多
A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was develope...A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ~MV, with 1.75 ~ 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the local spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.展开更多
The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, ra...The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, radiation field with a peak temperature of up to 155 eV was generated in a gold cavity heated by four laser beams on the SG-II laser system and was used to irradiate a plastic foam cylinder at one end. The radiatively ablated foam cylinder was then backlighted side-on by x-ray from a laser-irradiated Ti disk. By observing the transmission decrease due to the shock compression of the foam cylinder, the trajectories of shock front were measured, and from the onset of the intense thermal emission from the side of the cylinder, the propagations of the ionization front were also observed on the same shot. The experimental measurements were compared to predictions of the radiation hydrodynamics code Multi-1D and reasonable agreements were found.展开更多
This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of...This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of the materials. Tungsten Inert Gas Welding (TIG) is adopted to weld the Stainless Steel (SS316L) nuclear grade materials. The material is fabricated with dimensions of 140 × 16 × 10 mm and AE signatures are studied under preload conditions. Mechanical Jig is fabricated to maintain constant load in concentrated weld region. When external load is applied on the weld region, the deformed specimen experiences acoustic emission signals form the weld defect region which are potential source of releasing stress energy. Liner Location Technique (LLT) is adopted for AE singal studies and the generated signal is processed by 2-channel USB—AE node and AE-WIN software. The tests are conducted on two different samples having each defect. A conventional NDT method i.e. X-ray Radiography is conducted on the samples to know the defect ranging and correlated with AE signatures. This study will be helpful to standardize the AE signals for different implanted weld defects of SS 316L materials and it is found that, the parameter “counts vs. amplitude” has given the widest distinction with respect to the type of defects.展开更多
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.
基金Project supported by the National Natural Science Foundation of China (Grant No.10576006)the Foundation of China Academy of Engineering Physics (Grant Nos.2007A01001 and 2009B0202020)
文摘This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
基金This work was partially supported by Quaid-i-Azam University Research Grant, Ministry of Science & Technology Grant, Pakistan Science Foundation Project No. PSF/R&D/C-QU/Phys (199), Higher Education Commission Project for Plasma Physics, Pakistan Atomic
文摘Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.
文摘Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金Project supported by the staff of the Shenguang-Ⅱ upgrade Laser facilityThis study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25010100,XDA25010300,XDA25030100,XDA25030200,and XDA25051000)+2 种基金the National Natural Science Foundation of China(Grant Nos.11827807 and 12105359)the Open Foundation of Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences(Grant No.SGKF202105)the Chinese Academy of Sciences Youth Interdisciplinary Team(Grant No.JCTD-2022-05).
文摘We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.
基金supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Nos.lzujbky-2016-208 and lzujbky-2016-32)the Lanzhou University Construction Project for Innovation and Cooperative Education Base
文摘Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector's photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels(PN(10000)). The extraction results are incomplete because a portion of the samplerocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude.In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.
文摘To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.
文摘Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.
文摘Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.
基金financially supported by the Program of Shanghai Subject Chief Engineering (No. 14XD1425000)the National Natural Science Foundation of China (No. 51304135)the Chinese Scholarship Council and DOE (No. DE-FG02-07ER46417)
文摘The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Results show that equiaxed dendrites, including exotic 'butterfly-shaped' dendrite morphology, dominate at high cooling rate (〉1 K/s). When the cooling rate decreases in the range of 0.5-1 K/s, the equiaxed-to-columnar transition takes place, and solute segregates at the center of two long dendrite arms (LDA) of the 'butterfly-shaped' dendrite. When the cooling rate is lower than 0.3 K/s, directional solidification occurs and the columnar dendritic growth direction gradually rotates from the crystalline axis to the thermal gradient direction with an increase in cooling rate. Meanwhile, interface moves faster but the dendrite arm spacing decreases. Floating, collision and rotation of dendrites under convection were also studied in this work.2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金supported by the National Natural Science Foundation of China(No.11805212)National Key Research and Development Program of China(No.2019YFE03080200)Fundamental Research Funds for the Central Universities(No.22120200405)。
文摘High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick-Baez microscope was developed on the Shenguang-Ⅱ(SG-Ⅱ)Update laser facility.The microscope uses an optimized multilayer design of Co/C and W/C stacks to obtain a high reflection efficiency of the Ti characteristic lines while meeting the precise alignment requirement at the Cu Kα line.The alignment method based on dual simulated balls was proposed herein,which simultaneously realizes an accurate indication of the center field of view and the backlighter position.The optical design,multilayer coatings,and alignment method of the microscope and the experimental result of Ti flash radiography of the Au-coned CH shell target on the SG-Ⅱ Update are described.
基金financial support from the exploratory project of State Key Laboratory of Explosion Science and Technology, China (No. QNKT19-09)。
文摘The prediction of the fragment velocity distribution of a cylindrical cased charge with end caps is one of the key issues to assess the damage efficiency of the warhead. However, limited work has been conducted to predict the fragment velocity distributions along the axis of cylindrical cased charges with end caps. This paper presents a study of the velocity distribution of fragments caused by the explosion of a cylindrical cased charge with end caps. The fragment velocity distribution and the end cap velocity were determined by an X-ray radiography method, and the axial fragment distribution was determined by witness plates. It was found that the velocities of fragments, especially near the edge, were increased when the end caps were added, and the position of maximum velocity is closer to the non-detonation end. The fragment velocities were increased, and the fragment projection range was decreased with the increase of the thickness of the end cap. A formula for fragment velocity distributions of a cylindrical cased charge with end caps, which is based on Huang’s formula, was proposed by the theoretical analysis and data fitting and validated experimentally. The results indicate that the proposed formula is accurate in predicting the fragment velocity distribution along the axis of a cylindrical cased charge with end caps detonated at one end.
基金the support of RFBR grant 14-29-06099Competitiveness Programme of NRNU MEPhI
文摘We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.
文摘AIM: To explore the optimal low dose of MSCT in orbital trauma examination. METHODS: Sixty transverse images of the fracture layer were selected. Low-dose images acquired at 30, 70, 100, 140, 170, and 200 milliampere (mA) were simulated by adding noise to the image space using software. After assessing the images according to the conditions of image quality and fracture, we found the optimal tube current that met diagnostic requirements and then applied it to clinical use. The CT Dose Index volume (CTDIvol), dose length product (DLP) and effective dose (ED) were recorded. The image quality was classified as good, fairly good, ordinary, poor, or very poor according to image level, noise, anatomic structure and whether the diagnostic requirements were met or not. The rank-sum test was used to perform statistical analysis on the ranked data The Chi-square test was used for the numerical data. RESULTS: Under the scan conditions of a conventional dose of 300 mA, 60 cases of orbital fracture, 38 cases of orbital emphysema, 25 cases of ocular damage, and 3 cases of intraorbital foreign body were demonstrated in the images of the 60 orbital trauma patients. Among the low dose simulated images, the image quality difference of the different doses was of statistical significance (chi(2) =15.678, P =0.016). When the dose was lowered to 70 mA, the above mentioned clinical signs were still clear and diagnostic, however the image quality assessment results indicated that 2 cases were good, 16 cases were fairly good, and 42 cases were ordinary, poor or very poor. When the simulated dose tube current was 100mA, the image quality assessment results were 18 cases good, 34 cases fairly good, and 8 cases ordinary, poor and very poor; compared with the conventional dose, there was no statistical significance (P>0.05). When using a 100 mA tube current to examine 40 cases of orbital trauma patients in the clinic, the acquired image quality was 10 cases good, 26 cases fairly good and 4 cases ordinary, without any cases of poor or very poor. The CTDIvol, DLP and ED were 20.72mGy, 124.97mGy.cm and 0.26mSv, respectively, while the CTDIvol, DLP and ED were 62.53mGy, 375.18mGy.GTtl and 0.86mSv, respectively, when using a conventional dose of 300mA. Compared with the tube current of 100mA for scanning, the ED declined 70%. CONCLUSION: When conducting an MSCT scan for orbital trauma, the acquired images using the 100 mA tube current can meet the clinical diagnostic requirements, and the radiation dose to the patients can be decreased.
基金supported by National Natural Science Foundation of China (Grant Nos. 11305128 and 11505142)the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR.1503)
文摘A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ~MV, with 1.75 ~ 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the local spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.
基金supported by the Science and Technology Fund of the China Academy of Engineering Physics (Grant No. 2007B08003)
文摘The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, radiation field with a peak temperature of up to 155 eV was generated in a gold cavity heated by four laser beams on the SG-II laser system and was used to irradiate a plastic foam cylinder at one end. The radiatively ablated foam cylinder was then backlighted side-on by x-ray from a laser-irradiated Ti disk. By observing the transmission decrease due to the shock compression of the foam cylinder, the trajectories of shock front were measured, and from the onset of the intense thermal emission from the side of the cylinder, the propagations of the ionization front were also observed on the same shot. The experimental measurements were compared to predictions of the radiation hydrodynamics code Multi-1D and reasonable agreements were found.
文摘This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of the materials. Tungsten Inert Gas Welding (TIG) is adopted to weld the Stainless Steel (SS316L) nuclear grade materials. The material is fabricated with dimensions of 140 × 16 × 10 mm and AE signatures are studied under preload conditions. Mechanical Jig is fabricated to maintain constant load in concentrated weld region. When external load is applied on the weld region, the deformed specimen experiences acoustic emission signals form the weld defect region which are potential source of releasing stress energy. Liner Location Technique (LLT) is adopted for AE singal studies and the generated signal is processed by 2-channel USB—AE node and AE-WIN software. The tests are conducted on two different samples having each defect. A conventional NDT method i.e. X-ray Radiography is conducted on the samples to know the defect ranging and correlated with AE signatures. This study will be helpful to standardize the AE signals for different implanted weld defects of SS 316L materials and it is found that, the parameter “counts vs. amplitude” has given the widest distinction with respect to the type of defects.