期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Observation of Low-Level Jets in the Eastern Tropical Indian Ocean Based on Shipborne Coherent Doppler Lidar
1
作者 WANG Haiyuan LIU Lin +10 位作者 FAN Mengqi YANG Yang YANG Guang DUAN Yongliang LIU Baochao SU Qinglei ZHANG Binbin WANG Fengjun SHI Xuliang LI Qiuchi ZENG Ai 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1163-1172,共10页
In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si... In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs. 展开更多
关键词 low-level jets coherent Doppler lidar ERA5 RADIOSONDE eastern Indian Ocean
下载PDF
The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event 被引量:14
2
作者 Yuhan LUO Yu DU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期350-373,共24页
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio... An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale. 展开更多
关键词 extremely persistent heavy rainfall low-level jet dynamic and thermodynamic effect diurnal cycle
下载PDF
Analysis of the Characteristics of the Low-level Jets in the Middle Reaches of the Yangtze River during the Mei-yu Season
3
作者 Chunguang CUI Wen ZHOU +5 位作者 Hao YANG Xiaokang WANG Yi DENG Xiaofang WANG Guirong XU Jingyu WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期711-724,共14页
Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth genera... Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5)reanalysis dataset.Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs)concentrated at heights of 900-1200 m.The BLJs occur most frequently at 2300 LST(LST=UTC+8 hours)but are strongest at 0200 LST,with composite wind velocities>14 m s^(-1).Synoptic-system-related LLJs(SLLJs)occur most frequently at 0800 LST but are strongest at 1100LST,with composite wind velocities>12 m s^(-1).Both BLJs and SLLJs are characterized by a southwesterly wind direction,although the wind direction of SLLJs is more westerly,and northeasterly SLLJs occur more frequently than northeasterly BLJs.When Wuhan is south of the mei-yu front,the westward extension of the northwest Pacific subtropical high intensifies,and the low-pressure system in the eastern Tibetan Plateau strengthens,favoring the formation of LLJs,which are closely related to precipitation.The wind speeds on rainstorm days are greater than those on LLJ days.Our analysis of four typical heavy precipitation events shows the presence of LLJs at the center of the precipitation and on its southern side before the onset of heavy precipitation.BLJs were shown to develop earlier than SLLJs. 展开更多
关键词 mei-yu front boundary layer jets synoptic low-level jets heavy rainfall middle reaches of the Yangtze River
下载PDF
Formation of Low-Level Jets over Southern China in the Mei-yu Season
4
作者 Xuanyu LIU Guixing CHEN +1 位作者 Sijia ZHANG Yu DU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1731-1748,共18页
This study examines the diversity of low-level jet(LLJ)formation and related physical processes over southern China.A total of 171 LLJ formation events with enhanced daily southwesterlies and early-morning maximum win... This study examines the diversity of low-level jet(LLJ)formation and related physical processes over southern China.A total of 171 LLJ formation events with enhanced daily southwesterlies and early-morning maximum wind speeds were observed during the mei-yu seasons of 1989–2018.The LLJs can be further categorized into four types based on the increases in the daily mean and diurnal amplitude of the low-level winds.Analysis of the synoptic-scale disturbances shows that the two types of LLJ formation(Q1 and Q4),which feature large increases of daily southerly wind components,are mainly induced by west-east dipole patterns of pressure change,in association with the enhanced southwest vortex and/or the western Pacific subtropical high(WPSH).In contrast,the other two types(Q2 and Q3),which feature relatively large increases in their daily westerly components,are related to a northwest-southeast dipole pattern of pressure change due to the mid-latitude trough and the WPSH.We further analyze the considerable variations in the diurnal thermal forcing among the LLJ formation events.The strong(weak)daytime heating of solar radiation leads to relatively large(small)increases in the diurnal amplitude of low-level winds in Q1 and Q2(Q3 and Q4)types.Therefore,different combinations of synopticscale disturbances and diurnal thermal forcings are found to account for the diversity in LLJ formation and associated differences in downstream rainfall patterns.These results help to improve our understanding and prediction of the formation of LLJs. 展开更多
关键词 low-level jets formation processes diurnal variations synoptic-scale disturbances
下载PDF
Thermodynamics and Microphysical Characteristics of an Extreme Rainfall Event Under the Influence of a Low-level Jet over the South China Coast
5
作者 徐碧裕 黎慧琦 +7 位作者 叶朗明 刘显通 饶晓娜 肖辉 徐加民 林青 蒲义良 黄青兰 《Journal of Tropical Meteorology》 SCIE 2023年第2期216-235,共20页
In this paper,the data of Automatic Weather Stations(AWSs),ERA5 reanalysis,sounding,wind profile radar,and dual-polarization radar are used to study an extreme rainfall event in the south China Coast on 11 to 12 May 2... In this paper,the data of Automatic Weather Stations(AWSs),ERA5 reanalysis,sounding,wind profile radar,and dual-polarization radar are used to study an extreme rainfall event in the south China Coast on 11 to 12 May 2022 from the aspects of thermodynamics and microphysical characteristics under the influence of low-level jets(LLJs).Results show that:(1)The extreme rainfall event can be divided into two stages:the first stage(S1)from 0000 to 0600 LST on May 12 and the second stage(S2)from 0700 to 1700 LST on the same day.During S1,the rainfall is mainly caused by the upper-level shortwave trough and the boundary layer jet(BLJ),characterized by strong upward motion on the windward side of mountains.In S2,the combined influence of the BLJ and synoptic-system-related low-level jet(SLLJ)increases the vertical wind shear and vertical vorticity,strengthening the rainstorm.In combination with the effect of topography,a warm and humid southwest flow continuously transports water vapor to farther north,resulting in a significant increase in rainfall over the study area(on the terrain’s windward slope).From S1 to S2,the altitude of a divergence center in the upper air decreases obviously.(2)The rainfalls in the two stages are both associated with the mesoscale convergence line(MCL)on the surface,and the wind field from the mesoscale outflow boundary(MOB)in S1 is in the same direction as the environmental winds.Due to a small area of convergence that is left behind the MOB,convection moves eastward quickly and causes a short duration of heavy rainfall.In S2,the convergence along the MOB is enhanced,which strengthens the rainfall and leads to strong outflows,further enhancing the surface convergence near the MOB and forming a positive feedback mechanism.It results in a slow motion of convection and a long duration of heavy rainfall.(3)In terms of microphysics,the center of a strong echo in S1 is higher than in S2.The warm-rain process of the oceanic type characterizes both stages,but the convective intensity in S2 is significantly stronger than that in S1,featuring bigger drop sizes and lower concentrations.It is mainly due to the strengthening of LLJs,which makes small cloud droplets lift to melting levels,enhancing the ice phase process(riming process),producing large amounts of graupel particles and enhancing the melting and collision processes as they fall,resulting in the increase of liquid water content(LWC)and the formation of large raindrops near the surface. 展开更多
关键词 low-level jet THERMODYNAMICS MICROPHYSICS heavy rain south China coast
下载PDF
Role of the Nocturnal Low-level Jet in the Formation of the Morning Precipitation Peak over the Dabie Mountains 被引量:16
6
作者 Peiling FU Kefeng ZHU +2 位作者 Kun ZHAO Bowen ZHOU Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第1期15-28,共14页
The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ... The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation. 展开更多
关键词 nocturnal boundary layer low-level jet diurnal variation PRECIPITATION Dabie Mountains meiyu season
下载PDF
Low-Level Jets over Southeast China: The Warm Season Climatology of the Summer of 2003 被引量:5
7
作者 LIU Hong-Bo LI Li-Juan WANG Bin 《Atmospheric and Oceanic Science Letters》 2012年第5期394-400,共7页
The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operation... The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data on 1.0-1.0-degree grids at 6-h intervals. The major criteria for choosing the LLJ ineluded the following: a maximum wind speed equal to or greater than 12.0 m s-1, a wind direction of between 180° and 270°, and the height of wind maximum at 900-700 hPa, not confined to single pressure level. The results show that the LLJs over southeast China dominate at 850 and 800 hPa. These LLJs are closely associated with the topography of this area and tend to locate regions with large terrain gradients, including the northeastern and eastem Yunnan-Guizhou Plateau. Under the influence of mid-latitude westerly winds, the LLJs above 750 hPa move northward to the Yangtze-Huai River Basin. Com- pared to the ten-year (2000-2009) mean climate condi- tions, the LLJs in the warm season of summer 2003 were exceptionally active and strong, as reflected by the posi- tive anomalies of LLJ occurrence numbers and wind speed. In addition, the 2003 LLJs showed strong diurnal variation, especially at pressure levels below 800 hPa. The majority of the LLJs appeared between midnight and the early moming hours (before 8 a.m.). Finally, the summary of LLJ grid numbers indicates that more than 80% of LLJs in June and July 2003 occurred within the 33-d rainy period. Thus, these LLJs are directly related to the anomalously heavy rainfall in the Yangtze-Huai River Basin. 展开更多
关键词 low-level jet ANOMALY diurnal variation heavy rainfall
下载PDF
Change of Low-level Jet in a Heavy Rainstorm Process of Xiangtan in July 2016 被引量:1
8
作者 Dai Jin He Ning +1 位作者 Chen Si Lin Mingli 《Meteorological and Environmental Research》 CAS 2019年第2期10-14,共5页
Based on the previous research on the model of rainstorm weather with low-level jet in Xiangtan,using the classification result of radar echo characteristics,the wind profile data provided by new generation of weather... Based on the previous research on the model of rainstorm weather with low-level jet in Xiangtan,using the classification result of radar echo characteristics,the wind profile data provided by new generation of weather radar in Changsha and hourly rainfall data,a thorough study of the heavy rainfall from 2 to 5 July 2016 in Xiangtan was conducted. It was concluded that heavy precipitation had the characteristics of the WPSH pattern of rainstorm with low-level jet at early stage,and then it converted to cold shear jet pattern in latter stage. When low-level southwest jet began to have momentum download,that is to say,there was more than 12 m/s of southwest jet below 1 km,and it rapidly strengthened and expanded downward,it was conducive to the occurrence of short-term rainstorm. The low-level jet would not immediately cause a strong precipitation when it reached the station,with a certain lag. A positive correlation existed between the increase of low-level jet index and precipitation intensity,and low-level jet index could predict the occurrence of heavy rainfall and rain intensity. 展开更多
关键词 RAINSTORM low-level jet index WIND PROFILE product Xiangtan
下载PDF
A Study of the Relationship between Low-level Jet and inversion Layer over an Agroforest Ecosystem in East China Plain
9
作者 钟中 王汉杰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期299-310,共12页
The relationship between the super–low–level jet (LLJ) and inversion layer over an agroforest ecosystem on the Huang–Huai–Hai plain in the eastern China is studied by means of a time–independent K–closure model.... The relationship between the super–low–level jet (LLJ) and inversion layer over an agroforest ecosystem on the Huang–Huai–Hai plain in the eastern China is studied by means of a time–independent K–closure model. It is found that the intensified inversion near the surface of a luxuriantly growing agroforest ecosystem leads to the formation and development of the LLJ, the more intense the inversion, the stronger is the LLJ. The critical value of inversion intensity index for the LLJ formation is 0.75°C/ 100 m, which relates to the necessary geostraphic wind velocity of 6.0 to 10 m / s at the top level of the model. The numerical calculations show that the roughness length of the underlying surface has considerable effects on the LLJ structure. Key words Low?level jet - Temperature inversion - Agroforest ecosystem The project was supported by the National Natural Science Foundation of China (NSFC) (49975016). 展开更多
关键词 low-level jet Temperature inversion Agroforest ecosystem
下载PDF
STATISTICAL ANALYSIS OF LOW-LEVEL JET STREAMS IN NANJING AREA BASED ON WIND PROFILER DATA
10
作者 陈楠 胡明宝 +1 位作者 张柽柽 徐芬 《Journal of Tropical Meteorology》 SCIE 2016年第3期426-432,共7页
In order to understand the activity characteristics of low-level jets in the Nanjing area,statistical analysis and comparative study are carried out on their monthly and diurnal variations,characteristics of their cor... In order to understand the activity characteristics of low-level jets in the Nanjing area,statistical analysis and comparative study are carried out on their monthly and diurnal variations,characteristics of their cores and accompanying weather conditions using wind profile data in 2005-2008 collected by two wind profilers.The results show that low-level jets have significant monthly and diurnal variations.They occur more frequently in spring and summer than in autumn and winter and are more active in early morning and at night,with the maximum wind speed usually occurring at midnight.The central part of the low-level jet occurs mainly at the height of less than 1400 meters,and the enhancement of central speed is beneficial to the appearance of precipitation.Meanwhile,when the low-level jet appears in summer,it helps cause heavy rain.The statistical results of the boundary wind profiler are well consistent with those of the tropospheric wind profiler.Two kinds of wind profilers also have the capability of continuously detecting the development of low-level jets. 展开更多
关键词 TROPOSPHERIC WIND PROFILER boundary WIND PROFILER horizontal WIND profile low-level jet STATISTICS
下载PDF
Excitation of Low-level Jet as Seen by GOES (I-O) Satellite off the Somali Coast
11
作者 P.N.Mahajan V.R.Mujumdar S.P.Ghanekar 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第4期475-482,共8页
The intensification of a low-level jet off the Somali coast, as observed through GOES (I-O) satellite during Indian summer monsoon 1979 has been studied. Excitation of Low-level cross-equatorial flow in the western In... The intensification of a low-level jet off the Somali coast, as observed through GOES (I-O) satellite during Indian summer monsoon 1979 has been studied. Excitation of Low-level cross-equatorial flow in the western Indian ocean results from an interaction between extratropical perturbations moving eastward across the South African-Malgassy region of the Southern Hemisphere. This excitation occurs 2-3 days after the first appearance of a northward propagation cold front across the South African-Malgassy region. Inten-sification of cross-equatorial flow is followed by an increase in rainfall activity along the west coast of India after 3-4 days. The study reveals that this association can be used to forecast an increase in rainfall activity along the west coast of India 5-7 days in advance. 展开更多
关键词 I-O Excitation of low-level jet as Seen by GOES
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
12
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
下载PDF
Impact of the Complex Terrain in Beijing on Formation of Low-Level Jets
13
作者 Li’ao ZHOU Chenggang WANG +1 位作者 Shiguang MIAO Ju LI 《Journal of Meteorological Research》 SCIE CSCD 2024年第1期138-150,共13页
This study investigated how the Taihang Mountains and the Yanshan Mountains affect low-level jets(LLJs)in the Beijing area,based on conventional radiosonde observations from Nanjiao Observatory(2016–2017)and high-res... This study investigated how the Taihang Mountains and the Yanshan Mountains affect low-level jets(LLJs)in the Beijing area,based on conventional radiosonde observations from Nanjiao Observatory(2016–2017)and high-resolution Weather Research and Forecasting–Advanced Research WRF(WRF-ARW)model simulations.Analysis of radiosonde observations indicated that LLJs in the study area are mainly from the southwest and northwest directions,with occurrence frequency of 44.6%and 33.0%,respectively.Southwest(northwest)LLJs are aligned parallel(perpendicular)to the orientation of the Taihang Mountain Range.Terrain sensitivity experiments using the WRF-ARW model were then conducted to examine the effects of terrain forcing on the northwest and southwest LLJs,with adopted terrain heights of 100%and 50%.The results showed that for northwest LLJs,reduction in the elevation of the Taihang Mountain Range led to weakening of jet intensity by approximately 20%and reduction in jet maximum height by approximately 250 m;lowering the Yanshan Mountain Range had minor influence on the northwest LLJs,with only a 5.2%reduction in intensity and no substantial change in jet maximum height.For southwest LLJs,reduction in the elevation of both the Taihang and Yanshan Mountain ranges resulted in minor changes in the intensity and height of the jets.Further analysis revealed that the topography in the Beijing area could modulate the height and intensity of the stable layer by altering the inversion structure within the boundary layer.The LLJs can develop rapidly within the stable layer,and both the location and the scale of the jet core exhibited reasonable agreement with the extent of the stable layer. 展开更多
关键词 low-level jets(LLJs) mesoscale numerical simulation terrain forcing
原文传递
Influence of Coastal Marine Boundary Layer Jets on Rainfall in South China 被引量:4
14
作者 Yu DU Yian SHEN Guixing CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第5期782-801,共20页
Coastal marine boundary layer jets(CMBLJs)play an important role in coastal and inland rainfall in South China.Using 21 years of ERA5 and CMORPH rainfall data,two main CMBLJs are found,one on each side of Hainan Islan... Coastal marine boundary layer jets(CMBLJs)play an important role in coastal and inland rainfall in South China.Using 21 years of ERA5 and CMORPH rainfall data,two main CMBLJs are found,one on each side of Hainan Island(named BLJ-WEST and BLJ-EAST),which are always strengthened jointly.Both CMBLJs often occur in the pre-summer rainy season and exhibit an evident diurnal cycle with a maximum at night.With the emergence of the CMBLJs,rainfall is significantly enhanced in South China,particularly downstream of each CMBLJ.The response of rainfall to the CMBLJs is mainly attributed to convergence at the terminus of each CMBLJ,terrain-induced lifting,and relevant atmospheric stratification.Coastal rainfall downstream of the BLJ-WEST is much weaker than that downstream of the BLJ-EAST because of higher CIN over the Beibu Gulf,which is caused by lower temperature lapse rates and adiabatic heating in the lee of the Annamite Range.The inland rainfall increases along with CMBLJ intensity,whereas coastal rainfall reaches a maximum in the presence of moderate CMBLJs rather than stronger CMBLJs.Stronger CMBLJs induce stronger dynamic lifting but higher CIN near the coastal area.Additionally,CAPE near the coast does not become highest with strongest CMBLJs,because the CAPE generation contributed by coastal dynamic lifting can be offset by the negative contribution caused by the horizontal advection of cold and dry air from the Indochina Peninsula.Therefore,anomalous dynamic lifting,moisture flux convergence,and CAPE/CIN associated with CMBLJ intensity jointly result in anomalous rainfall. 展开更多
关键词 low-level jet RAINFALL CAPE CIN coastal region
下载PDF
Nocturnal Low-levelWinds and Their Impacts on Particulate Matter over the Beijing Area 被引量:2
15
作者 Yong CHEN Junling AN +5 位作者 Yele SUN Xiquan WANG Yu QU Jingwei ZHANG Zifa WANG Jing DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第12期1455-1468,共14页
Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collec... Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM. 展开更多
关键词 WEAK low-level jet WIND direction SHEAR WIND lidar low-level PM1
下载PDF
Characteristics and Formation Mechanisms of Low-Level Jets in Northeastern China
16
作者 Hailong SHU Fan ZHANG +4 位作者 Yu DU Yue WANG Huichuang GUO Zhen SONG Qinghong ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS 2024年第12期2432-2445,共14页
This study examines low-level jets(LLJs)across Northeastern China during both warm(June-September)and cold seasons(December-March)from 1957 to 2021,using fifth generation of the European Centre for Medium-Range Weathe... This study examines low-level jets(LLJs)across Northeastern China during both warm(June-September)and cold seasons(December-March)from 1957 to 2021,using fifth generation of the European Centre for Medium-Range Weather Forecasts reanalysis data with 25-km resolution.LLJs manifest in two prominent regions,one along the leeward flank of the Da Hinggan Ling Mountains in the cold season and another at the center of Northeastern China in the warm season.The intricate interplay between ambient circulation and terrain shapes LLJ distribution,altitudes,wind directions,diurnal cycles,and seasonal diversities.During the warm season,prevailing southwesterly LLJs are found at 925 hPa,while the cold season features stronger and more frequent northwesterly LLJs at 875 hPa.Analysis of the diurnal patterns reveals distinctive behaviors of LLJs in the cold and warm seasons.During the warm season,the single peak in LLJ occurrence emerges around midnight;conversely,in the cold season,LLJs are most frequent shortly before midnight,with an additional sub-peak in the morning.A momentum budget analysis establishes mechanisms underlying these two distinct diurnal variations.In both seasons,the diurnal variation of LLJs is predominately driven by an inertial oscillation and mountain-valley circulations.However,the sub-peak observed in the cold-season morning arises from the thermodynamic and dynamic interaction between the low-level atmosphere and complex terrain. 展开更多
关键词 low-level jet seasonal disparities diurnal variation inertial oscillation terrain-flow interaction
下载PDF
ENERGETIC DIAGNOSIS FOR TWO KINDS OF LOW LEVEL JETS
17
作者 汪钟兴 矫梅燕 《Journal of Tropical Meteorology》 SCIE 1996年第2期189-193,共5页
On the basis of the budget equations for KR and KD, this paper presents the horizontal pattern of budget terms for two kinds of low level jets (LLJ ) with and without heavy rain. The results show that the mechanisms f... On the basis of the budget equations for KR and KD, this paper presents the horizontal pattern of budget terms for two kinds of low level jets (LLJ ) with and without heavy rain. The results show that the mechanisms for generating and maintaining LLJ are different, and especially, the direction of energy conversion is opposite. A positive conversion from KD to KR appears to be a necessary but not sufficient condition in the lower troposphere near the heavy rain area. The intensity and direction of energy conversion depends not only on the relative position of vorticity and divergence field, but also on the vertical profile of the jets directly. 展开更多
关键词 low-level jet HEAVY RAIN ENERGETIC DIAGNOSIS
下载PDF
On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China 被引量:20
18
作者 Peng WEI Xin XU +6 位作者 Ming XUE Chenyue ZHANG Yuan WANG Kun ZHAO Ang ZHOU Shushi ZHANG Kefeng ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期337-349,共13页
An extremely heavy rainfall event occurred in Zhengzhou,China,on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm,which broke the station record for China's Mainland.Based on radar observations and a ... An extremely heavy rainfall event occurred in Zhengzhou,China,on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm,which broke the station record for China's Mainland.Based on radar observations and a convection-permitting simulation using the WRF-ARW model,this paper investigates the multiscale processes,especially those at the mesoscale,that support the extreme observed hourly rainfall.Results show that the extreme rainfall occurred in an environment characteristic of warm-sector heavy rainfall,with abundant warm moist air transported from the ocean by an abnormally northward-displaced western Pacific subtropical high and Typhoon In-Fa(2021).However,rather than through back building and echo training of convective cells often found in warm-sector heavy rainfall events,this extreme hourly rainfall event was caused by a single,quasi-stationary storm in Zhengzhou.Scale separation analysis reveals that the extreme-rainproducing storm was supported and maintained by the dynamic lifting of low-level converging flows from the north,south,and east of the storm.The low-level northerly flow originated from a mesoscale barrier jet on the eastern slope of the Taihang Mountain due to terrain blocking of large-scale easterly flows,which reached an overall balance with the southerly winds in association with a low-level meso-β-scale vortex located to the west of Zhengzhou.The large-scale easterly inflows that fed the deep convection via transport of thermodynamically unstable air into the storm prevented the eastward propagation of the weak,shallow cold pool.As a result,the convective storm was nearly stationary over Zhengzhou,resulting in record-breaking hourly precipitation. 展开更多
关键词 extreme rainfall multiscale processes OROGRAPHY barrier jet low-level mesoscale vortex
下载PDF
An Extreme Monsoonal Heavy Rainfall Event over Inland South China in June 2022: A Synoptic Causes Analysis 被引量:1
19
作者 邓文剑 任鹏飞 +2 位作者 张东 孙宇 吴乃庚 《Journal of Tropical Meteorology》 SCIE 2023年第1期16-25,共10页
An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes... An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage(June 13-15) was the frontal heavy rainfall caused by cold air(brought by an East Asian trough)from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet(SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage(June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet(BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized. 展开更多
关键词 monsoonal heavy rainfall south China low-level jet synoptic causes
下载PDF
The Monsoon Low-Level Jet:Climatology and Impact on Monsoon Rainfall over the West Coast and Central Peninsular India
20
作者 Rohit THAPLIYAL 《Journal of Meteorological Research》 SCIE CSCD 2023年第1期112-125,共14页
The monsoon low-level jet(MLLJ)originates at Mascarene high and after traveling thousands of kilometers enters India from the western boundary causing deep convection,cloudiness,and rainfall.Although its core lies at ... The monsoon low-level jet(MLLJ)originates at Mascarene high and after traveling thousands of kilometers enters India from the western boundary causing deep convection,cloudiness,and rainfall.Although its core lies at 850 hPa,it has a large vertical extent;therefore,different meteorological parameters at different levels have a large influence on the Indian summer monsoon rainfall.This study aims to examine the upper-air climatology of 9 stations on the west coast and central Peninsular India and to find out the effects of various parameters at different standard pressure levels on the Indian summer monsoon rainfall variability.We used the 34-yr(1971–2004)actual upper-air radiosonde/radio wind and standard synoptic surface observations data from these 9 stations and reported some new aspects of the MLLJ.The NCEP/NCAR and ECMWF reanalysis wind data have also been used to holistically study the features of MLLJ over sea and land areas.This study,as opposed to some recent studies,confirms the splitting of MLLJ into two branches,which can be seen on a few days during the monsoon season.Further analyses show that the change in geopotential height between 800 and 900 hPa has a strong bearing on the strength of MLLJ.The change in the upper-air pressure gradient force over the Indian landmass can cause a change in the wind speed of MLLJ during the monsoon season. 展开更多
关键词 monsoon low-level jet(MLLJ) heavy rainfall MLLJ splitting MLLJ climatology Somali low-level jet
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部