期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates
1
作者 Anton P.Koskin Jingsong Zhang +9 位作者 Olga B.Belskaya Olga A.Bulavchenko Darya A.Konovalova Sergey A.Stepanenko Arkadiy V.Ishchenko Irina G.Danilova Vyacheslav L.Yurpalov Yurii V.Larichev Roman G.Kukushkin Petr M.Yeletsky 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3245-3263,共19页
An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO... An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time. 展开更多
关键词 Mg-modified catalysts high-loaded nickel catalyst Layered double hydroxides Hydrogen storage LOHC DEHYDROGENATION
下载PDF
In Situ-Constructed Li_(x)MoS_(2)with Highly Exposed Interface Boosting High-Loading and Long-Life Cathode for All-Solid-State Li-S Batteries
2
作者 Hao Li Rui Wang +4 位作者 Jiangping Song Dan Liu Hongyang Gao Yimin Chao Haolin Tang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期163-174,共12页
As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li-S batteries(ASSLSBs),numerous carbon additives and solid-state electrolytes(SSEs... As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li-S batteries(ASSLSBs),numerous carbon additives and solid-state electrolytes(SSEs)have been incorporated into the cathode to facilitate ion/electron pathways around sulfur.However,this has resulted in a reduced capacity and decomposition of SSEs.Therefore,it is worth exploring neotype sulfur hosts with electronic/ionic conductivity in the cathode.Herein,we present a hybrid cathode composed of few-layered S/MoS_(2)/C nanosheets(<5 layers)that exhibits high-loading and long-life performance without the need of additional carbon additives in advanced ASSLSBs.The multifunctional MoS_(2)/C host exposes the abundant surface for intimate contacting sites,in situ-formed LixMoS_(2)during discharging as mixed ion/electron conductive network improves the S/Li2S conversion,and contributes extra capacity for the part of active materials.With a high active material content(S+MoS_(2)/C)of 60 wt%in the S/MoS_(2)/C/Li_(6)PS_(5)Cl cathode composite(the carbon content is only~3.97 wt%),the S/MoS_(2)/C electrode delivers excellent electrochemical performance,with a high reversible discharge capacity of 980.3 mAh g^(-1)(588.2 mAh g^(-1)based on the whole cathode weight)after 100 cycles at 100 mA g^(-1).The stable cycling performance is observed over 3500 cycles with a Coulombic efficiency of 98.5%at 600 mA g^(-1),while a high areal capacity of 10.4 mAh cm^(-2)is achieved with active material loading of 12.8 mg cm^(-2). 展开更多
关键词 all-solid-state lithium-sulfur batteries conversion/intercalation high-loading and long-life low carbon content mixed ionic/electronic conductivities
下载PDF
Computational Study of the Effects of Shroud Geometric Variation on Turbine Performance in a 1.5-Stage High-Loaded Turbine 被引量:4
3
作者 Wei Jia Huoxing Liu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期439-446,共8页
Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and asso... Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in tur- bomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution signifi- cantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into considera- tion during the routine of turbine design due to insufficient understanding of its impact on end wall flows and tur- bine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computa- tional investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following ge- ometry parameters were varied respectively: 展开更多
关键词 labyrinth seal tip shroud geometry shroud leakage flow turbine performance high-loaded turbine
原文传递
Development and application of a throughflow method for high-loaded axial flow compressors 被引量:5
4
作者 LI Bo GU Chun Wei +2 位作者 LI Xiao Tang LIU Tai Qiu XIAO Yao Bing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期93-108,共16页
In this paper, a novel engineering platform for throughflow analysis based on streamline curvature approach is developed for the research of a 5-stage compressor. The method includes several types of improved loss and... In this paper, a novel engineering platform for throughflow analysis based on streamline curvature approach is developed for the research of a 5-stage compressor. The method includes several types of improved loss and deviation angle models, which are combined with the authors' adjustments for the purpose of reflecting the influences of three-dimensional internal flow in high-loaded multistage compressors with higher accuracy. In order to validate the reliability and robustness of the method, a series of test cases, including a subsonic compressor P&W 3S1, a transonic rotor NASA Rotor 1B and especially an advanced high pressure core compressor GE E^3 HPC, are conducted. Then the computation procedure is applied to the research of a 5-stage compressor which is designed for developing an industrial gas turbine. The overall performance and aerodynamic configuration predicted by the procedure, both at design- and part-speed conditions, are analyzed and compared with experimental results, which show a good agreement. Further discussion regarding the universality of the method compared with CFD is made afterwards. The throughflow method is verified as a reliable and convenient tool for aerodynamic design and performance prediction of modern high-loaded compressors. This method is also qualified for use in the further optimization of the 5-stage compressor. 展开更多
关键词 throughflow method multi-stage compressor high-loaded loss and deviation angle models streamline curvature aerodynamic design performance prediction
原文传递
LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes 被引量:1
5
作者 Jin-Kwang Song Moonsoo Kim +1 位作者 Seongbae Park Young-Jun Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期574-581,I0015,共9页
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode... Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode. 展开更多
关键词 Lithium-sulfur battery Electrolyte concentration Li2S deposition high-loading sulfur electrode
下载PDF
Design and Verification for Dual⁃mode CDFS and High⁃Load Compressor with a Large Flow Regulation Range
6
作者 HUANG Lei ZHANG Jun +2 位作者 HAO Yuyang REN Hongkai CHU Wuli 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期632-644,共13页
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ... This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine. 展开更多
关键词 fusion design DUAL-MODE high-load compressor large flow regulation range
下载PDF
小型涡轮平面叶栅试验段设计
7
作者 季正鑫 龙启运 +1 位作者 祁明旭 杨长茂 《风机技术》 2024年第2期17-23,61,共8页
Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the hi... Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the high load turbine cascades, a linear turbine cascade test section is designed, which enables the Schlieren photography and static pressure measurement along the cascade profile can be conducted. Variable pitch is realized in the test section to achieve different Zweifel coefficients. Due to the capability limitation of the air supplier, the test section is designed to have only5 blade channels with shortened blade height to achieve high Mach number flow conditions. Numerical investigations were carried out to investigate the wall effect and its in fluences on the flow fields inside the test section. The result indicates that the shape of the connecting part of the test section has a significant influence on the flow similarity among different blade passages. With the proper design, a good repetition flow is achieved between neighbored blade passages. 展开更多
关键词 high-load Turbine Linear Cascade Variable Pitch Test Section
下载PDF
Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes
8
作者 Jun-Sheng Jiang He-Lei Wei +3 位作者 Ai-Dong Tan Rui Si Wei-De Zhang Yu-Xiang Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期753-761,共9页
Iron-based single-atom catalysts with nitrogen-doped carbon as support(Fe-SA/NPC)are considered effective alternatives to replace Pt-group metals for scalable application in fuel cells.However,synthesizing high-loadin... Iron-based single-atom catalysts with nitrogen-doped carbon as support(Fe-SA/NPC)are considered effective alternatives to replace Pt-group metals for scalable application in fuel cells.However,synthesizing high-loading Fe-SA catalysts by a simple procedure remains challenging.Herein,we report a high-loading(7.5 wt%)Fe-SA/NPC catalyst prepared by carbon-assisted pyrolysis of metal complexes.Both the nitrogen-doped porous carbon(NPC)support with high specific surface area and ο-phenylenediamine(o-PD)play key roles role in the preparation of high-loading Fe-SA/NPC catalysts.The results of X-ray photoelectron spectroscopy,high-angle annular dark-field scanning transmission electron microscopy,and X-ray absorption fine structure spectroscopy experiments show that the Fe atoms are anchored on the carbon carriers in a single-atom site configuration and coordinated with four of the doped nitrogen atoms of the carbon substrates(Fe-N_(4)).The activities of the Fe-SA/NPC catalysts in the oxygen reduction reaction increased with increasing iron loading.The optimized 250Fe-SA/NPC-800 catalyst exhibited an onset potential 0.97 V of and a half-wave potential of 0.85 V.Our study provides a simple approach for the large-scale synthesis of high-loading single-atom catalysts. 展开更多
关键词 Fe-N_(4)single-atom catalysts Oxygen reduction reaction high-loading Coordinated effect Four-electron transfer process
下载PDF
Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions
9
作者 Mingyuan Pang Min Yang +9 位作者 Haohao Zhang Yuqing Shen Zhen Kong Jiajia Ye Chaoyue Shan Ying Wang Juan An Wensi Li Xing Gao Jibin Song 《Nano Research》 SCIE EI CSCD 2024年第11期9371-9396,共26页
The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts ar... The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research. 展开更多
关键词 oxygen reduction reaction high-loading single-atom catalysts
原文传递
Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries 被引量:14
10
作者 Qi Kang Yong Li +4 位作者 Zechao Zhuang Dingsheng Wang Chunyi Zhi Pingkai Jiang Xingyi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期194-204,I0006,共12页
Solid polymer electrolytes (SPEs) are urgently required for achieving practical all-solid-state lithium metal batteries (ASSLMBs) but remain plagued by low ionic conductivity.Herein,we propose a strategy of salt polar... Solid polymer electrolytes (SPEs) are urgently required for achieving practical all-solid-state lithium metal batteries (ASSLMBs) but remain plagued by low ionic conductivity.Herein,we propose a strategy of salt polarization to fabricate a highly ion-conductive SPE by employing a high-dielectric polymer that can interact strongly with lithium salts.Such a polymer with large dipole moments can guide lithium cations (Li^(+)) to be arranged along the chain,forming a continuous pathway for Li^(+) hopping within the SPE.The as-fabricated SPE,poly(vinylidene difluoride)(PVDF)-LiN(SO_(2)F)_(2)(LiFSI),has an extraordinarily high dielectric constant (up to 10^(8)) and ultrahigh ionic conductivity (0.77×10^(-3)S cm^(-1)).Based on the PVDF–LiFSI SPE,the assembled Li metal symmetrical cell shows excellent Li plating/stripping reversibility at 0.1 m A cm^(-2),0.1 m Ah cm^(-2)over 1500 h^(-1) the ASS LiFePO_(4) batteries deliver long-term cycling stability at 1 C over 350 cycles (2.74 mg cm^(-2)) and an ultralong cycling lifespan of over 2600 h(100 cycles) with high loading (11.5 mg cm^(-2)) at 28°C.First-principles calculations further reveal the ion-dipole interactions-controlled conduction of Li^(+) in PVDF–LiFSI SPE along the PVDF chain.This work highlights the critical role of dielectric permittivity in SPE,and provides a promising path towards high-energy,long-cycling lifespan ASSLMBs. 展开更多
关键词 Salt polarization High dielectric high-loading ALL-SOLID-STATE Lithium metal battery 2600 h lifespan
下载PDF
Designandconstructionof athree-dimensionalelectrodewith biomass-derived carbon current collector andwater-soluble binder for high-sulfur-loading lithium-sulfur batteries 被引量:3
11
作者 Pengfei Wang Zhe Gong +8 位作者 Ke Ye Vipin Kumar Kai Zhu Linna Sha Jun Yan Jinling Yin Kui Cheng Guiling Wang Dianxue Cao 《Carbon Energy》 CAS 2020年第4期635-645,共11页
Lithium-sulfur batteries attract lots of attention due to their high specific capacity,low cost,and environmental friendliness.However,the low sulfur utilization and short cycle life extremely hinder their application... Lithium-sulfur batteries attract lots of attention due to their high specific capacity,low cost,and environmental friendliness.However,the low sulfur utilization and short cycle life extremely hinder their application.Herein,we design and fabricate a three-dimensional electrode by a simple filtration method to achieve a high-sulfur loading.Biomass porous carbon is employed as a current collector,which not only enhances the electronic transport but also effectively limits the volume expansion of the active material.Meanwhile,an optimized carboxymethyl cellulose binder is chosen.The chemical bonding restricts the shuttle effect,leading to improved electrochemical performance.Under the ultrahigh sulfur load of 28mg/cm2,the high capacity of 18mAh/cm2 is still maintained,and stable cycling performance is obtained.This study demonstrates a viable strategy to develop promising lithium-sulfur batteries with a three-dimensional electrode,which promotes sulfur loading and electrochemical performance. 展开更多
关键词 3D structure biomass carbon high-load sulfur lithium-sulfur battery water-soluble binder
下载PDF
A 0.5-meter-scale,high-load,soft-enclosed gripper capable of grasping the human body 被引量:1
12
作者 LI HaiLi ZHANG Shuai +2 位作者 ZHANG XuanHao ZHAO WuMian YAO JianTao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第2期501-511,共11页
Developing large,soft grippers with high omnidirectional load(above 40 kg)has always been challenging.We address this challenge by developing a powerful soft gripper that can grasp the human body based on a soft-enclo... Developing large,soft grippers with high omnidirectional load(above 40 kg)has always been challenging.We address this challenge by developing a powerful soft gripper that can grasp the human body based on a soft-enclosed grasping structure and a soft-rigid coupling structure.The envelope size of the proposed soft gripper is 611.6 mm×559 mm×490.7 mm,the maximum grasping size is 417 mm,and the payload on the human body is more than 90 kg,which has exceeded most existing soft grippers.Furthermore,the grasping force prediction of the gripper is achieved through theoretical modeling.The primary contribution of this work is to overcome the size and payload limits of current soft grippers and implement a human-grasping experiment based on the soft-grasping method. 展开更多
关键词 soft gripper large size high-load soft-enclosed grasping
原文传递
Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics
13
作者 Tongtao Wan Shuming Liu +5 位作者 Changcheng Wu Zhaoyang Tan Shuanglong Lin Xiaojie Zhang Zisheng Zhang Guihua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期132-140,共9页
Lithium-sulfur(Li-S)batteries hold great promises to serve as next-generation energy storage devices because of their high theoretical energy density and environmental benignity.However,the shuttle effect of the solub... Lithium-sulfur(Li-S)batteries hold great promises to serve as next-generation energy storage devices because of their high theoretical energy density and environmental benignity.However,the shuttle effect of the soluble lithium polysulfides(LiPS)and intrinsic insulating nature of sulfur lead to low sulfur utilization and coulombic efficiency,leading to poor cycling performance.The impeded charge transportation and retard LiPS catalytic conversion also endows the Li-S batteries with sluggish redox reaction,leading to unsatisfied rate capability.In this study,Co-based MOF material ZIF-67 is used as the precursor to prepare Co nano-dots decorated three-dimensional graphene aerogel as sulfur immobilizer.This porous architecture establishes a highly conductive interconnected framework for fast charge/mass transportation.The exposed Co nano-dots serve as active sites to strongly trap LiPS,which endows CoNDs@G with low decomposition energy barrier for fast LiPS conversion reaction and promote the completely Li2 S catalytic transformation.Li-S cells based on the Co-NDs@G cathode exhibits excellent cyclability and a high capacity retention rate of 91.1%in 100 cycles.This strategy offers a new direction to design sulfur immobilizer for accelerated LiPS conversion kinetics of Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Co nano-dots Graphene network Metal-organic framework high-loading cathodes
下载PDF
Effects of Boundary Layer Suction on Aerodynamic Performance in a High-load Compressor Cascade 被引量:9
14
作者 郭爽 陈绍文 +2 位作者 宋彦萍 宋宇飞 陈浮 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第2期179-186,共8页
This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the casca... This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of rnidspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does. 展开更多
关键词 TURBOMACHINERY boundary layer suction high-load diffusion cascade experimental investigation
原文传递
A combined application of micro-vortex generator and boundary layer suction in a high-load compressor cascade 被引量:14
15
作者 Shan MA Wuli CHU +2 位作者 Haoguang ZHANG Xiangjun LI Haiyang KUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1171-1183,共13页
In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex ge... In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall. 展开更多
关键词 Boundary layer SUCTION Flow control strategies high-load COMPRESSOR CASCADE Numerical simulations VORTEX generators
原文传递
Hierarchical-structure anatase TiO2 with conductive network for high-rate and high-loading lithium-ion battery 被引量:6
16
作者 Xinghua Liu Lijiang Zhao +5 位作者 Shitong Wang Meng Chao Yutong Li Jin Leng Junying Zhang Zilong Tang 《Science Bulletin》 SCIE EI CAS CSCD 2019年第16期1148-1151,共4页
Titanium dioxides have been extensively investigated as promising anodes for Lithium ion batteries(LIBs)because of the high–rate capacity and cyclability,as well as the improved safety over graphite anode(1,2)However... Titanium dioxides have been extensively investigated as promising anodes for Lithium ion batteries(LIBs)because of the high–rate capacity and cyclability,as well as the improved safety over graphite anode(1,2)However,as a typical insertion–type anode,anatase TiO2 exhibits low conductivity(10–12S cm-1 for electron conductivity[3]and 10–17–10–10 cm2 s1 for Li+ion diffusion coefficient[4])and poor specific capacity(only accommodate<0.5 Li per bulk TiO2 unit[5]),severely limiting its practical applications. 展开更多
关键词 TiO Hierarchical-structure ANATASE TiO2 with conductive network for high-rate and high-loading lithium-ion battery
原文传递
Recent advances in high-loading catalysts for low-temperature fuel cells: From nanoparticle to single atom 被引量:8
17
作者 Lixiao Shen Miao Ma +6 位作者 Fengdi Tu Zigang Zhao Yunfei Xia Kokswee Goh Lei Zhao Zhenbo Wang Guangjie Shao 《SusMat》 2021年第4期569-592,共24页
Low-temperature fuel cells(LTFCs)are considered to be one of the most promising power sources for widespread application in sustainable and renew-able energy conversion technologies.Although remarkable advances have b... Low-temperature fuel cells(LTFCs)are considered to be one of the most promising power sources for widespread application in sustainable and renew-able energy conversion technologies.Although remarkable advances have been made in the mass activity of catalysts,mass transport impedance needs to be urgently addressed at a well-designed membrane electrode assembly(MEA)scale.Increasing the loading of electrocatalysts is conducive to prepare thinner and more efficient MEAs owing to the resulting enhanced reactant permeability,better proton diffusion,and lower electrical resistance.Herein,recent progress in high-loading(≥40 wt.%)Pt nanoparticle catalysts(NPCs)and high-loading(≥2 wt.%)single-atom catalysts(SACs)for LTFC applications are reviewed.A summary of various synthetic approaches and support materials for high-loading Pt NPCs and SACs is systematically presented.The influences of high surface area and appropriate surface functionalization for Pt NPCs,as well as coordina-tion environment,spatial confinement effect,and strong metal-support interac-tions(SMSI)for SACs are highlighted.Additionally,this review presents some ideas regarding challenges and future opportunities of high-loading catalysts in the application of LTFCs. 展开更多
关键词 high-loading catalysts low-temperature fuel cells membrane electrode assembly nanoparticle catalysts single-atom catalysts
原文传递
Numerical Investigation of the Load Distribution between the Main Blade and the Splitter Blade in a High-Loading Centrifugal Compressor 被引量:1
18
作者 OU Jun JIN Donghai GUI Xingmin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1682-1695,共14页
In the traditional design of the centrifugal compressor,the splitter blade and the main blade always keep the same shape.However,to enable high efficiency of the high-loading centrifugal compressor,the matching of des... In the traditional design of the centrifugal compressor,the splitter blade and the main blade always keep the same shape.However,to enable high efficiency of the high-loading centrifugal compressor,the matching of design parameters of the splitter blade and the main blade needs to be optimized.In this paper,the influence of the load distribution between the main blade and the splitter blade on the aerodynamic performance,the flow field,and the internal vortices of a high-loading centrifugal compressor were studied by means of CFD prediction.Four cases with different values of the variable CR which is defined as the load-ratio of splitter blade to main blade were set up.In each case,the splitter blade and the main blade were shaped according to different laws of circulation distribution(_(r)V_(u))while the average circulation of the splitter blade and the main blade at any meridional position were consistent with that of the prototype.The results showed that a proper reduction of the load-ratio of splitter blade to main blade is beneficial to suppress the leakage vortex of the splitter blade and reduce the scale of the wake in the channel near the suction-side of the splitter blade,which consequently improves the flow uniformity at the impeller outlet and enhances the aerodynamic performance of both the stage and the component.The stage isentropic efficiency of the optimal case was found to be 0.7%higher than that of the prototype and the stage total pressure ratio was also improved.The optimal value of CR,which in this investigation is 94%,is supposed to be the result of the trade-off between the development of the wake and the leakage vortices in adjacent two channels.The optimization of the load distribution between the main blade and the splitter blade provides an opportunity to further improve the high-loading centrifugal compressor performance. 展开更多
关键词 high-loading centrifugal compressor load distribution performance flow uniformity WAKE leakage vortex
原文传递
Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene 被引量:40
19
作者 Yu Xiong Wenming Sun +7 位作者 Yunhu Han Pingyu Xin Xusheng Zheng Wensheng Yan Juncai Dong Jian Zhang Dingsheng Wang Yadong Li 《Nano Research》 SCIE EI CSCD 2021年第7期2418-2423,共6页
The oxidation of hydrocarbons to produce high value-added compounds(ketones or alcohols)using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views.Herein,we s... The oxidation of hydrocarbons to produce high value-added compounds(ketones or alcohols)using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views.Herein,we successfully synthesized cobalt single atom site catalysts(Co SACs)with high metal loading of 23.58 wt.%supported on carbon nitride(CN),which showed excellent catalytic properties for oxidation of ethylbenzene in air.Moreover,Co SACs show a much higher turn-over frequency(19.6 h^(−1))than other reported non-noble catalysts under the same condition.Comparatively,the as-obtained nanosized or homogenous Co catalysts are inert to this reaction.Co SACs also exhibit high selectivity(97%)and stability(unchanged after five runs)in this reaction.DFT calculations reveal that Co SACs show a low energy barrier in the first elementary step and a high resistance to water,which result in the robust catalytic performance for this reaction. 展开更多
关键词 single atom site high-loading catalysts heterogeneous catalysts ethylbenzene oxidation
原文传递
Combined Experimental and Numerical Investigations on the Roughness Effects on the Aerodynamic Performances of LPT Blades 被引量:3
20
作者 Marco Berrino Fabio Bigoni +4 位作者 Daniele Simoni Matteo Giovannini Michele Marconcini Roberto Pacciani Francesco Bertini 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期32-42,共11页
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulation... The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers(300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested(Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer. 展开更多
关键词 low-pressure turbine high-load profile roughness unsteady inflow CFD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部