The relationships of cooling rate with microstructure and thermal conductivity of vermicular graphite cast iron(VGI) cylinder block were studied, which are important for design and optimization of the casting process ...The relationships of cooling rate with microstructure and thermal conductivity of vermicular graphite cast iron(VGI) cylinder block were studied, which are important for design and optimization of the casting process of VGI cylinder blocks. Cooling rates at different positions in the cylinder block were calculated based on the cooling curves recorded with a solidification simulation software. The metallographic structure and thermal conductivity were observed and measured using optical microscopy(OM), scanning electrical microscopy(SEM) and laser flash diffusivity apparatus, respectively. The effects of the cooling rate on the vermicularity, total and average areas of all graphite particles, and the pearlite fraction in the VGI cylinder block were investigated. It is found that the vermicularity changes in parabola trend with the increase of cooling rate. The total area of graphite particles and the cooling rate at eutectoid stage can be used to predict pearlite fraction well. Moreover, it is found that the thermal conductivity at room temperature is determined by the average area of graphite particles and pearlite fraction when the range of vermicularity is from 80% to 93%. Finally, the quantitative models are established to calculate the vermicularity, pearlite fraction, and thermal conductivity of the VGI cylinder block.展开更多
The effects of AITi5B1 grain refinement and cooling rate on the microstructure and mechanical properties of a secondary AlSi7Cu3Mg alloy were reported. Metallographic and image analysis techniques have been used to qu...The effects of AITi5B1 grain refinement and cooling rate on the microstructure and mechanical properties of a secondary AlSi7Cu3Mg alloy were reported. Metallographic and image analysis techniques have been used to quantitatively examine the macrostructural and microstructural changes occurring with the addition of grain-refining agent at different cooling rates by using a step casting die. The results indicate that the addition of AlTi5B1 produces a fine and uniform grain structure throughout the casting and this effect is more pronounced in the slowly solidified regions. Increasing the cooling rate, lower amount of grain refiner is necessary to produce a uniform grain size throughout the casting. On the other hand, the initial contents of Ti and B, present as impurity elements in the supplied secondary alloy, are not sufficient to produce an effective grain refinement. The results from the step casting geometry were applied to investigate a gasoline 16V cylinder head, which was produced by gravity semi-permanent mould technology. The grain refinement improves the plastic behaviour of the alloy and increases the reliability of the casting, as evidenced by the Weibull statistics.展开更多
Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand ...Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand energy transfers between two phases were calculated with the interface transfer submodels by using the computational fluid dynamics software CFX. Results showed that compared with the single-phase flow without considering the boiling heat transfer,the sub-cooled boiling heat transfer of the cylinder head was greatly increased. According to the results of the numerical simulation,an optimized structure of the water jacket was proposed. Finally,temperature and velocity of coolant,diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.展开更多
文摘The relationships of cooling rate with microstructure and thermal conductivity of vermicular graphite cast iron(VGI) cylinder block were studied, which are important for design and optimization of the casting process of VGI cylinder blocks. Cooling rates at different positions in the cylinder block were calculated based on the cooling curves recorded with a solidification simulation software. The metallographic structure and thermal conductivity were observed and measured using optical microscopy(OM), scanning electrical microscopy(SEM) and laser flash diffusivity apparatus, respectively. The effects of the cooling rate on the vermicularity, total and average areas of all graphite particles, and the pearlite fraction in the VGI cylinder block were investigated. It is found that the vermicularity changes in parabola trend with the increase of cooling rate. The total area of graphite particles and the cooling rate at eutectoid stage can be used to predict pearlite fraction well. Moreover, it is found that the thermal conductivity at room temperature is determined by the average area of graphite particles and pearlite fraction when the range of vermicularity is from 80% to 93%. Finally, the quantitative models are established to calculate the vermicularity, pearlite fraction, and thermal conductivity of the VGI cylinder block.
文摘The effects of AITi5B1 grain refinement and cooling rate on the microstructure and mechanical properties of a secondary AlSi7Cu3Mg alloy were reported. Metallographic and image analysis techniques have been used to quantitatively examine the macrostructural and microstructural changes occurring with the addition of grain-refining agent at different cooling rates by using a step casting die. The results indicate that the addition of AlTi5B1 produces a fine and uniform grain structure throughout the casting and this effect is more pronounced in the slowly solidified regions. Increasing the cooling rate, lower amount of grain refiner is necessary to produce a uniform grain size throughout the casting. On the other hand, the initial contents of Ti and B, present as impurity elements in the supplied secondary alloy, are not sufficient to produce an effective grain refinement. The results from the step casting geometry were applied to investigate a gasoline 16V cylinder head, which was produced by gravity semi-permanent mould technology. The grain refinement improves the plastic behaviour of the alloy and increases the reliability of the casting, as evidenced by the Weibull statistics.
基金Supported by the National Key Basic Research Program of China(1030021210710)
文摘Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand energy transfers between two phases were calculated with the interface transfer submodels by using the computational fluid dynamics software CFX. Results showed that compared with the single-phase flow without considering the boiling heat transfer,the sub-cooled boiling heat transfer of the cylinder head was greatly increased. According to the results of the numerical simulation,an optimized structure of the water jacket was proposed. Finally,temperature and velocity of coolant,diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.