With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a...With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.展开更多
Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-c...Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.展开更多
Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, ...Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.展开更多
Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective appro...Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development.展开更多
Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. ...Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity(CK), farmer practice(FP), high yield and high efficiency(HH), and super high yield(SH), to estimate the yield gap. Different factorial experiments(fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha^(–1), respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors(contribution rates) were plant density(13.29%)>fertilizer(11.95%)>hybrids(8.19%)>irrigation(4%) for FP to HH, and hybrids(8.94%)>plant density(4.84%)>fertilizer(1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.展开更多
Experiment was conducted at the Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Jilin Province, China, during 2009-2010. Six representative varieties of maize ...Experiment was conducted at the Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Jilin Province, China, during 2009-2010. Six representative varieties of maize (Baihe in the 1950s, Jidan 101 in the 1960s, Zhongdan 2 in the 1970s, Yedan 13 in the 1980s, Zhengdan 958 in the 1990s, and Xianyu 335 in the 2000s) were each planted under two different densities (52 500 and 82 500 plants ha-~) and two different nitrogen application levels (150 and 300 kg ha-l). Root characteristics and distribution among soil layers were studied by the field root digging method. The results showed that root mass increased with the process of the growth and development of the plant, and it peaked at kernel filling stage, and decreased at maturity due to the root senesces. Root mass of different maize varieties from the 1950s to 1980s had a trend of increase, while it decreased for the modern varieties. Root length and root surface areas had the similar changing trend. The study suggested that early maize varieties may have root redundancy, and reducing root redundancy may be a direction for variety improvement for high yield. Root characteristics were affected by nitrogen application level and density; modern varieties were more suitable for higher fertilizer application level and density conditions. Root characteristics distribution among soil layers decreased by an exponent equation, but the regression coefficients of different varieties were different. Though the root length density (RLD) of every soil layer of different varieties also decreased by an exponent equation, there were large variations of RLD in every part of a layer.展开更多
文摘With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.
文摘Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.
基金the financial support of the National Key Research and Development Program of China (2016YFD0300109 and 2018YFD0200703)the National Natural Science Foundation of China (31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China (JATS[2019]458)the High-end Talent Support Program of Yangzhou University, Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions, China。
文摘Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.
基金supported by the National Natural Science Foundation of China(32301453 and 3272675)the China Postdoctoral Science Foundation(2023M730682)。
文摘Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development.
基金the National Key Research and Development Program of China(2016YFD0300106)the National Natural Science Foundation of China(31601247)for their financial support。
文摘Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity(CK), farmer practice(FP), high yield and high efficiency(HH), and super high yield(SH), to estimate the yield gap. Different factorial experiments(fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha^(–1), respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors(contribution rates) were plant density(13.29%)>fertilizer(11.95%)>hybrids(8.19%)>irrigation(4%) for FP to HH, and hybrids(8.94%)>plant density(4.84%)>fertilizer(1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.
基金supported by the National Basic Research Program of China (2009CB118605)the National Natural Sciences Foundation of China (31071362)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD16B08)
文摘Experiment was conducted at the Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Jilin Province, China, during 2009-2010. Six representative varieties of maize (Baihe in the 1950s, Jidan 101 in the 1960s, Zhongdan 2 in the 1970s, Yedan 13 in the 1980s, Zhengdan 958 in the 1990s, and Xianyu 335 in the 2000s) were each planted under two different densities (52 500 and 82 500 plants ha-~) and two different nitrogen application levels (150 and 300 kg ha-l). Root characteristics and distribution among soil layers were studied by the field root digging method. The results showed that root mass increased with the process of the growth and development of the plant, and it peaked at kernel filling stage, and decreased at maturity due to the root senesces. Root mass of different maize varieties from the 1950s to 1980s had a trend of increase, while it decreased for the modern varieties. Root length and root surface areas had the similar changing trend. The study suggested that early maize varieties may have root redundancy, and reducing root redundancy may be a direction for variety improvement for high yield. Root characteristics were affected by nitrogen application level and density; modern varieties were more suitable for higher fertilizer application level and density conditions. Root characteristics distribution among soil layers decreased by an exponent equation, but the regression coefficients of different varieties were different. Though the root length density (RLD) of every soil layer of different varieties also decreased by an exponent equation, there were large variations of RLD in every part of a layer.