We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matr...We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it.展开更多
An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of...An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix. In the algorithm two strategies are employed, one of which is called dis-unstabilization technique and the other is preprocessing technique. Together with them, a so-called ratio-reduction equation and a backtrack technique are introduced to avoid the instability and breakdown in the original algorithm. It is shown that the new algorithm can overcome the instability and breakdown at low cost. Numerical results have demonstrated that the algorithm is stable and can compute the eigenvalues to very high accuracy.展开更多
We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful atta...We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful attack of this code are also computed. For multi-sender authentication code,it allows a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message.展开更多
A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential c...A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential can be obtained by the method. The anharmonic oscillator potential and the rational potential are two important examples. Checked by numerical techniques, the results for the two potentials by the present method are proven to be exact and reliable.展开更多
A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
A matrix eigenvalue method is applied to analyse the thermodynamic stability of two-component interacting fermions. The non-relativistic and ultra-relativistic d = 1, 2, 3 dimensions have been discussed in detail, res...A matrix eigenvalue method is applied to analyse the thermodynamic stability of two-component interacting fermions. The non-relativistic and ultra-relativistic d = 1, 2, 3 dimensions have been discussed in detail, respectively. The corresponding stability region has been given according to the two-body interaction strength and the particle number density ratio.展开更多
An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an as...An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.展开更多
A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more strin...A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more stringent than the optimal bounds by Wolkowicz and Styan in specific cases.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method i...In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.展开更多
This paper gives the rank of matrix and equalities and inequalities of the difference number of non-zero eigenvalue, and discuss the equivalent description of multi angle of equalities for upper and lower bounds of th...This paper gives the rank of matrix and equalities and inequalities of the difference number of non-zero eigenvalue, and discuss the equivalent description of multi angle of equalities for upper and lower bounds of the inequality.展开更多
The eccentricity matrix of a graph is obtained from the distance matrix by keeping the entries that are largest in their row or column,and replacing the remaining entries by zero.This matrix can be interpreted as an o...The eccentricity matrix of a graph is obtained from the distance matrix by keeping the entries that are largest in their row or column,and replacing the remaining entries by zero.This matrix can be interpreted as an opposite to the adjacency matrix,which is on the contrary obtained from the distance matrix by keeping only the entries equal to 1.In the paper,we determine graphs having the second largest eigenvalue of eccentricity matrix less than 1.展开更多
The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result...The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result in 1987. This estimate is sharper than Hager’s result in 1982 and could not展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t...From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.展开更多
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
文摘We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it.
文摘An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix. In the algorithm two strategies are employed, one of which is called dis-unstabilization technique and the other is preprocessing technique. Together with them, a so-called ratio-reduction equation and a backtrack technique are introduced to avoid the instability and breakdown in the original algorithm. It is shown that the new algorithm can overcome the instability and breakdown at low cost. Numerical results have demonstrated that the algorithm is stable and can compute the eigenvalues to very high accuracy.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61179026)the Fundamental Research of the Central Universities of China Civil Aviation University of Science Special(Grant No.3122016L005)
文摘We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful attack of this code are also computed. For multi-sender authentication code,it allows a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60877055 and 60806041)the Shanghai Rising-Star Program,China (Grant No. 08QA14030)+1 种基金the Innovation Funds for Graduates of Shanghai University,China (Grant No. SHUCX092021)the Foundation of the Science and Technology Commission of Shanghai Municipality,China (Grant No. 08JC14097)
文摘A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential can be obtained by the method. The anharmonic oscillator potential and the rational potential are two important examples. Checked by numerical techniques, the results for the two potentials by the present method are proven to be exact and reliable.
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
基金Project supported by the Scientific Starting Research Fund of Central China Normal University of Chinathe National Natural Science Foundation of China (Grant Nos 10675052 and 10875050)Ministry of Education of China (Grant No IRT0624)
文摘A matrix eigenvalue method is applied to analyse the thermodynamic stability of two-component interacting fermions. The non-relativistic and ultra-relativistic d = 1, 2, 3 dimensions have been discussed in detail, respectively. The corresponding stability region has been given according to the two-body interaction strength and the particle number density ratio.
基金supported by the National Natural Science Foundation of China(No.11101149)the Basic Academic Discipline Program of Shanghai University of Finance and Economics(No.2013950575)
文摘An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.
文摘A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more stringent than the optimal bounds by Wolkowicz and Styan in specific cases.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
文摘In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.
文摘This paper gives the rank of matrix and equalities and inequalities of the difference number of non-zero eigenvalue, and discuss the equivalent description of multi angle of equalities for upper and lower bounds of the inequality.
基金supported by the Special Fund for Taishan Scholars Projectthe IC Program of Shandong Institutions of Higher Learning For Youth Innovative Talents+1 种基金supported by the National Natural Science Foundation of China (Grant No. 12371353)supported by the Science Fund of the Republic of Serbia grant number 7749676:Spectrally Constrained Signed Graphs with Applications in Coding Theory and Control Theory–SCSG-ctct
文摘The eccentricity matrix of a graph is obtained from the distance matrix by keeping the entries that are largest in their row or column,and replacing the remaining entries by zero.This matrix can be interpreted as an opposite to the adjacency matrix,which is on the contrary obtained from the distance matrix by keeping only the entries equal to 1.In the paper,we determine graphs having the second largest eigenvalue of eccentricity matrix less than 1.
基金Supported by the National Natural Science Foundation of China(2 0 0 0 CG0 1 0 3) the Fund of"The Developing Program for Outstanding Person"in NPUS & T Innovation Foundation for Young Teachers of Northwestern Polytechnical University.
文摘In this paper, the spectrum and characteristic polynomial for a special kind of symmetric block circulant matrices are given.
文摘The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result in 1987. This estimate is sharper than Hager’s result in 1982 and could not
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
文摘From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.