In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
In this paper, a new approach is successfully addressed to design the state-feedback adaptive stabilizing control law for a class of high-order nonlinear systems in triangular form and with unknown and nonidentical co...In this paper, a new approach is successfully addressed to design the state-feedback adaptive stabilizing control law for a class of high-order nonlinear systems in triangular form and with unknown and nonidentical control coefficients, whose stabilizing control has been investigated recently under the knowledge that the lower bounds of the control coefficients are exactly known. In the present paper, without any knowledge of the lower bounds of the control coefficients, based on the adaptive technique and appropriately choosing design parameters, we give the recursive design procedure of the stabilizing control law by utilizing the approach of adding a power integrator together with tuning functions. The state-feedback adaptive control law designed not only preserves the equilibrium at the origin, but also guarantees the global asymptotic stability of the closed-loop states and the uniform boundedness of all the other closed-loop signals.展开更多
In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designe...In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization...In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.展开更多
This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, th...This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, there have been abundant deterministic results which recently inspired the intense investigation for their stochastic analogous. However, because of the possibility of non-unique solutions to the systems, there lack basic concepts and theorems for the problem under investigation. First of all, two stochastic stability concepts are generalized to allow the stochastic systems with more than one solution, and a key theorem is given to provide the sufficient conditions for the stochastic stabilities in a weaker sense. Then, by introducing the suitable reduced order observer and appropriate control Lyapunov functions, and by using the method of adding a power integrator, a continuous (nonsmooth) output-feedback controller is successfully designed, which guarantees that the closed-loop system is globally asymptotically stable in probability.展开更多
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens...This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is prop...In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are c...This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and dire...Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the...This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.展开更多
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金The work is supported by the National Natural Science Foundation of China under Grants No.60304002 No.60674036the Science and Technical Development Plan of Shandong Province under Grant No.2004GG4204014.
文摘In this paper, a new approach is successfully addressed to design the state-feedback adaptive stabilizing control law for a class of high-order nonlinear systems in triangular form and with unknown and nonidentical control coefficients, whose stabilizing control has been investigated recently under the knowledge that the lower bounds of the control coefficients are exactly known. In the present paper, without any knowledge of the lower bounds of the control coefficients, based on the adaptive technique and appropriately choosing design parameters, we give the recursive design procedure of the stabilizing control law by utilizing the approach of adding a power integrator together with tuning functions. The state-feedback adaptive control law designed not only preserves the equilibrium at the origin, but also guarantees the global asymptotic stability of the closed-loop states and the uniform boundedness of all the other closed-loop signals.
基金supported by National Natural Science Foundation of China (Nos. 61273125 and 61104222)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103705110002)+3 种基金Program for the Scientific Research Innovation Team in Colleges and Universities of Shandong ProvinceShandong Provincial Natural Science Foundation of China (No. ZR2012FM018)Natural Science Foundation of Jiangsu Province (No. BK2011205)Natural Science Foundation of Jiangsu Normal University(No. 11XLR08)
文摘In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金Program for New Century Excellent Talents in University of China (NCET-05-0607)National Natural Science Fou-ndation of China (No.60774010)Project for Fundamental Research of Natural Sciences in Universities of Jingsu Province (No.07KJB510114)
文摘In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金supported by the National Natural Science Foundations of China (Nos. 60974003, 61143011, 61273084, 61233014)the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (No. JQ200919)the Independent Innovation Foundation of Shandong University (No. 2012JC014)
文摘This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, there have been abundant deterministic results which recently inspired the intense investigation for their stochastic analogous. However, because of the possibility of non-unique solutions to the systems, there lack basic concepts and theorems for the problem under investigation. First of all, two stochastic stability concepts are generalized to allow the stochastic systems with more than one solution, and a key theorem is given to provide the sufficient conditions for the stochastic stabilities in a weaker sense. Then, by introducing the suitable reduced order observer and appropriate control Lyapunov functions, and by using the method of adding a power integrator, a continuous (nonsmooth) output-feedback controller is successfully designed, which guarantees that the closed-loop system is globally asymptotically stable in probability.
基金Supported by Program for New Century Excellent Talents in University of China (NCET-05-0607), National Natural Science Foundation of China (60774010), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
基金supported by the National Natural Science Foundation of China(60674090)Shandong Natural Science Foundation(ZR2017QF016)
文摘This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Defense Basic Scientific Research Project(JCKY2020130C025)the National Science and Technology Major Project(J2019-III-0020-0064,J2019-V-0014-0109)。
文摘In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金supported in part by the National Natural Science Foundation of China(62373152,62333005,U21B6001,62073143,62273121)in part by the Natural Science Funds for Excellent Young Scholars of Hebei Province in 2022(F2022202014)+1 种基金in part by Science and Technology Research Project of Colleges and Universities in Hebei Province(BJ2020017)in part by the China Postdoctoral Science Foundation(2022M711639,2023T160320).
文摘This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project(funded by Yancheng Science and Technology Association)The 2024 Yancheng Key Research and Development Plan(Social Development)projects include“Research and Application of Multi-Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment.”。
文摘Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
文摘This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.