Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs...Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.展开更多
A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the ro...A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the rotation on the disintegration process of large-amplitude (170 m) Internal Solitary Waves (ISWs) and the semi-diurnal internal tide propagating from the deep basin station to the slope and shelf regions in a continuously stratified system. The numerical solutions show that the high-order nonlinearity significantly affects the wave profile by increasing the wave amplitude and the phase speed in the simulated area. It is shown that the initial KdV-type ISW will decay faster when the rotation dispersion is considered, however the wave profile does not change significantly and the rotation effect is not important. The simulations of the semi-diurnal internal tide indicate that the phase of the wave profile is shifted earlier when the rotation effect is included. A solitary wave packet emerges on the shelf, and the wave speed is also greater when considering the rotation dispersion. In addition, the effects of the background currents are discussed further in this paper It is found that the background currents generally change the magnitude and occasionally change the sign of the nonlinear coefficients in the northern SCS.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Optical Kerr effect, in which input light intensity linearly alters the refractive index, has enabled the generation ofoptical solitons, supercontinuum spectra, and frequency combs, playing vital roles in the on-chip ...Optical Kerr effect, in which input light intensity linearly alters the refractive index, has enabled the generation ofoptical solitons, supercontinuum spectra, and frequency combs, playing vital roles in the on-chip devices, fibercommunications, and quantum manipulations. Especially, terahertz Kerr effect, featuring fascinating prospects in futurehigh-rate computing, artificial intelligence, and cloud-based technologies, encounters a great challenge due to therather low power density and feeble Kerr response. Here, we demonstrate a giant terahertz frequency Kerr nonlinearitymediated by stimulated phonon polaritons. Under the influences of the giant Kerr nonlinearity, the power-dependentrefractive index change would result in a frequency shift in the microcavity, which was experimentally demonstratedvia the measurement of the resonant mode of a chip-scale lithium niobate Fabry-Pérot microcavity. Attributed to theexistence of stimulated phonon polaritons, the nonlinear coefficient extracted from the frequency shifts is orders ofmagnitude larger than that of visible and infrared light, which is also theoretically demonstrated by nonlinear Huangequations. This work opens an avenue for many rich and fruitful terahertz Kerr effect based physical, chemical, andbiological systems that have terahertz fingerprints.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting ...Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting the incremental integration of the state variables into system parameters.However,this approach cannot solve memristive systems in the presence of nonlinear terms other than the memristor term.In addition,the converted state variables may suffer from a degree of divergence.To allow simpler mechanistic analysis and physical implementation of extreme multistability phenomena,this paper uses a multiple mixed state variable incremental integration(MMSVII)method,which successfully reconstructs a four-dimensional hyperchaotic jerk system with multiple cubic nonlinearities except for the memristor term in a three-dimensional model using a clever linear state variable mapping that eliminates the divergence of the state variables.Finally,the simulation circuit of the reduced-dimension system is constructed using Multisim simulation software and the simulation results are consistent with the MATLAB numerical simulation results.The results show that the method of MMSVII proposed in this paper is useful for analyzing extreme multistable systems with multiple higher-order nonlinear terms.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlin...The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading.展开更多
Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(...Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 10~5 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes.展开更多
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higher...We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higherorder nonlinear effects and higher-order dispersion effects.The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons.The larger the higher-order nonlinear coefficient,the more intense the interaction between optical solitons,and the more unstable the transmission.At the same time,we discuss the influence of other free parameters on third-order soliton interactions.Effectively regulate the interaction of three optical solitons by controlling relevant parameters.These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable ...Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.展开更多
Metrological atomic force microscopes(Met.AFMs)with built-in interferometers are one of the main workhorses for versatile dimensional nanometrology.The interferometric nonlinearity error,particularly the high-order(i....Metrological atomic force microscopes(Met.AFMs)with built-in interferometers are one of the main workhorses for versatile dimensional nanometrology.The interferometric nonlinearity error,particularly the high-order(i.e.,3rd-and 4th-order)nonlinearity errors,is a dominant error source for further improving their metrology performance,which cannot be corrected using the conventional Heydemann correction method.To solve this problem,two new methods were developed.One uses a capacitive sensor embedded in the Met.AFM,and the other applies an external physical artifact with a flat surface.Both methods can be applied very conveniently and can effectively reduce the nonlinearity error.In this paper,the propagation of the(residual)nonlinearity error in step height calibrations is examined.Finally,the performance of the improved tool is verified in the calibration of a highly demanding industrial sample.For the measurements performed at 25 different positions and repeated six times,the standard deviation of the total 150 measured values is 0.08 nm,which includes the contributions from the reproducibility of the metrology tool and sample inhomogeneity.This research has significantly improved our dimensional nanometrology service.For instance,the extended measurement uncertainty(k=2)is reduced from 1.0 to 0.3 nm for the step height or etching depth calibrations.展开更多
In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
基金supported by the National Natural Science Foundation of China(62103175)Taishan Scholar Project of Shandong Province of China。
文摘Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.
基金supported by the National Natural Science Foundation of China(Grant No.41030855)
文摘A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the rotation on the disintegration process of large-amplitude (170 m) Internal Solitary Waves (ISWs) and the semi-diurnal internal tide propagating from the deep basin station to the slope and shelf regions in a continuously stratified system. The numerical solutions show that the high-order nonlinearity significantly affects the wave profile by increasing the wave amplitude and the phase speed in the simulated area. It is shown that the initial KdV-type ISW will decay faster when the rotation dispersion is considered, however the wave profile does not change significantly and the rotation effect is not important. The simulations of the semi-diurnal internal tide indicate that the phase of the wave profile is shifted earlier when the rotation effect is included. A solitary wave packet emerges on the shelf, and the wave speed is also greater when considering the rotation dispersion. In addition, the effects of the background currents are discussed further in this paper It is found that the background currents generally change the magnitude and occasionally change the sign of the nonlinear coefficients in the northern SCS.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金supported by the National Natural Science Foundation of China(62205158 and 11974192)the Foundation of State Key Laboratory of laser Interaction with Matter(SKLLIM2101)the 111 Project(B23045).
文摘Optical Kerr effect, in which input light intensity linearly alters the refractive index, has enabled the generation ofoptical solitons, supercontinuum spectra, and frequency combs, playing vital roles in the on-chip devices, fibercommunications, and quantum manipulations. Especially, terahertz Kerr effect, featuring fascinating prospects in futurehigh-rate computing, artificial intelligence, and cloud-based technologies, encounters a great challenge due to therather low power density and feeble Kerr response. Here, we demonstrate a giant terahertz frequency Kerr nonlinearitymediated by stimulated phonon polaritons. Under the influences of the giant Kerr nonlinearity, the power-dependentrefractive index change would result in a frequency shift in the microcavity, which was experimentally demonstratedvia the measurement of the resonant mode of a chip-scale lithium niobate Fabry-Pérot microcavity. Attributed to theexistence of stimulated phonon polaritons, the nonlinear coefficient extracted from the frequency shifts is orders ofmagnitude larger than that of visible and infrared light, which is also theoretically demonstrated by nonlinear Huangequations. This work opens an avenue for many rich and fruitful terahertz Kerr effect based physical, chemical, andbiological systems that have terahertz fingerprints.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071411)the Research Foundation of Education Department of Hunan Province,China(Grant No.20B567).
文摘Memristor-based chaotic systems with infinite equilibria are interesting because they generate extreme multistability.Their initial state-dependent dynamics can be explained in a reduced-dimension model by converting the incremental integration of the state variables into system parameters.However,this approach cannot solve memristive systems in the presence of nonlinear terms other than the memristor term.In addition,the converted state variables may suffer from a degree of divergence.To allow simpler mechanistic analysis and physical implementation of extreme multistability phenomena,this paper uses a multiple mixed state variable incremental integration(MMSVII)method,which successfully reconstructs a four-dimensional hyperchaotic jerk system with multiple cubic nonlinearities except for the memristor term in a three-dimensional model using a clever linear state variable mapping that eliminates the divergence of the state variables.Finally,the simulation circuit of the reduced-dimension system is constructed using Multisim simulation software and the simulation results are consistent with the MATLAB numerical simulation results.The results show that the method of MMSVII proposed in this paper is useful for analyzing extreme multistable systems with multiple higher-order nonlinear terms.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2021YFB2600700 and 2022YFC3102302)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.Y221007)+2 种基金the National Natural Science Foundation of China(Grant No.52271274)the Key Laboratory of Ministry of Education for Coastal Disaster and Protection,Hohai University(Grant No.202205)the Key Project of NSFC-Shandong Joint Research Funding POW3C(Grant No.U1906230).
文摘The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62273115,62173105)the Fundamental Research Funds for the Central Universities (Grant No.3072022FSC0401)。
文摘Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 10~5 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes.
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
基金Scientific Research Foundation of Weifang University of Science and Technology(Grant No.KJRC2022002)Shandong Province Higher Educational Science and Technology Program(Grant No.J18KB108)Research start-up fees for doctoral degree holders and senior professional title holders with master’s degrees of Binzhou University(Grant No.2022Y12)。
文摘We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higherorder nonlinear effects and higher-order dispersion effects.The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons.The larger the higher-order nonlinear coefficient,the more intense the interaction between optical solitons,and the more unstable the transmission.At the same time,we discuss the influence of other free parameters on third-order soliton interactions.Effectively regulate the interaction of three optical solitons by controlling relevant parameters.These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金Project supported by the Key Program of the Natural Science Foundation of Sichuan Provincial Education Department (Grant No. 2006A124)the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant No. 05JY029-084)
文摘Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.
基金Open Access funding enabled and organized by Projekt DEAL.
文摘Metrological atomic force microscopes(Met.AFMs)with built-in interferometers are one of the main workhorses for versatile dimensional nanometrology.The interferometric nonlinearity error,particularly the high-order(i.e.,3rd-and 4th-order)nonlinearity errors,is a dominant error source for further improving their metrology performance,which cannot be corrected using the conventional Heydemann correction method.To solve this problem,two new methods were developed.One uses a capacitive sensor embedded in the Met.AFM,and the other applies an external physical artifact with a flat surface.Both methods can be applied very conveniently and can effectively reduce the nonlinearity error.In this paper,the propagation of the(residual)nonlinearity error in step height calibrations is examined.Finally,the performance of the improved tool is verified in the calibration of a highly demanding industrial sample.For the measurements performed at 25 different positions and repeated six times,the standard deviation of the total 150 measured values is 0.08 nm,which includes the contributions from the reproducibility of the metrology tool and sample inhomogeneity.This research has significantly improved our dimensional nanometrology service.For instance,the extended measurement uncertainty(k=2)is reduced from 1.0 to 0.3 nm for the step height or etching depth calibrations.
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.