We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the ma...We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.展开更多
Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of hig...Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise,high failure rate,and short service time.Magneticfield modulation electromagnetic gear transmission is a new non-contact transmission method.However,the conventional modulation magnetic gear has low torque density and torque defects with largefluctuations.In order to overcome the gear transmis-sion problems of the existing semi-direct drive wind power generation machinery and improve the electromag-netic performance of the traditional magnetic gear transmission,this paper proposes a new transmission scheme of a non-contact semi-direct drive wind generator with a surface mount Halbach array modulated mag-netic gear method,and considers the electromagnetic properties of the semi-direct drive modulation magnetic gear of the wind turbine.Thefinite element software is used to construct the model of the surface-mounted Halbach array magnetic gear and the conventional gear,analyzed the distribution of magneticfield lines of the two magnetic gears,calculated the air gap magneticflux density of the inner and outer air gap,and obtained the main harmonics of the inner and outer air gap magnetic density;calculated the static torque and steady-state operating torque of the inner and outer rotors in the model,compared the air gapflux density,harmonics and torque of the magnetic gears.The simulation results show that the magneticfield modulation type mag-netic gear of the surface mount Halbach array magnetic gear method improves the magnetic induction wave-form of the inner and outer air gap,reduces the pulse torquefluctuation,and has a 60%higher static torque.Applying it to semi-direct drive wind power generation equipment not only overcomes the shortcomings of mechanical gears,but also has higher electromagnetic performance.Therefore,the surface-mounted Halbach array modulated magnetic gear can be used to replace the mechanical gearbox in the semi-direct drive wind power generation equipment.展开更多
A cycloidal speed reducer employing gears with permanent magnets acting as teeth is described. The magnets, which have their axes radially oriented in both the orbiting gear and the fixed internal gear, are inserted i...A cycloidal speed reducer employing gears with permanent magnets acting as teeth is described. The magnets, which have their axes radially oriented in both the orbiting gear and the fixed internal gear, are inserted in holes drilled in nonmagnetic rims without protruding from the cylindrical exposed surfaces. Because the orbiting gear is not restrained radially, it contacts the fixed gear and rolls on its inner surface. A normal force is developed at the contact point between the gears to balance the magnetic attraction and the centrifugal force of the orbiting gear. The friction available due to this normal force increases the transmission’s torque capacity, which is further increased by elimination of the gap between the gears. Also, the radial load on the supporting orbiting gear bearing is eliminated. A prototype with a reduction ratio of 26 is being tested.展开更多
This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid...This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid of statistic summary of the published papers.According to different evolutions from a magnetic gear(MG),four mainstreams of MGd machines are extracted and compared in terms of both mechanical complexity and electromagnetic performance.By virtue of their inherent features,such as high torque density and multi-power port,the feasibility of MGd machines for applications,where continuously variable transmission(CVT)and power split are demanded,is also described.展开更多
In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construct...In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construction in which segments are equipped with concentrated windings to form the stator.However,the AFMG machine has two rotors with different pole-pair numbers.Magnetic gear effect can be obtained to increase the torque density.The performance comparisons at no-load and on-load conditions are then studied by 3D-finite element analysis(FEM).Moreover,both machines are prototyped,tested and compared.展开更多
Magnetic gear is a transmission device with novel structure.It uses the principle of magnetic field modulation to transmit torque.In view of the magnetic leakage of the magnetic gear in the process of rotation and can...Magnetic gear is a transmission device with novel structure.It uses the principle of magnetic field modulation to transmit torque.In view of the magnetic leakage of the magnetic gear in the process of rotation and cannot be eliminated,a magnetic gear model with auxiliary silicon steel sheet is proposed.Based on the conventional magnetic gear structure,the silicon steel sheet is placed outside the permanent magnet of the outer rotor.The magnetization mode of the outer rotor permanent magnet is tangential magnetization,and the spoke structure is adopted,and the inner rotor PMs is surface mounted and magnetized in the radial magnetization.The improved model is simulated by finite element method under three-dimensional conditions,and the electromagnetic performances of the model are optimized.Compared with the conventional magnetic gear model,the improved model has good performance,which improves the transmission capacity of output torque and reduces torque ripple.It is a great significance to improve the performance of magnetic gear.展开更多
In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and externa...In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and external rotors are distributed in Halbach array,the inner rotor PMs are equally divided into 3 small pieces,and the outer rotor PMs are equally divided into 2 small pieces.At the same time,the static magnetic modulation ring iron blocks are slotted,each iron block has 3 slots,the width of the slot is 0.4°,and the depth of the single side slot is 1mm.Finally,a two-dimensional model is established,and the eddy current loss and iron loss of the model are optimized,compared with the conventional CMG model,it is found that the changed pattern can increase the internal and external output torque by 4%and 4.12%,respectively.The eddy current loss is reduced by 66.57%,and the iron loss is reduced by 8.9%,which significantly improve the operation efficiency of the CMG.展开更多
This paper presents a two-dimensional(2D)magnetic equivalent circuit(MEC)model to investigate the magnetic field distribution in the air-gap of an axial-field magnetic gear(AFMG).The MEC model is configured as a meshe...This paper presents a two-dimensional(2D)magnetic equivalent circuit(MEC)model to investigate the magnetic field distribution in the air-gap of an axial-field magnetic gear(AFMG).The MEC model is configured as a meshed reluctance network(RN)with permanent magnet magnetomotive-force sources.The MEC model based on RN is considered as a good compromise between accuracy and computational effort.This is a new model that will allow a faster analysis and design for the AFMG.Flux density in the air-gap is calculated with the proposed model and verified by finite element simulations.展开更多
Mechanical gearboxes are typically employed with doubly-fed induction generatur-based wind turbines. The main drawback of this solution is the gearbox's reliability and maintenance. Using magnetic gearbox in conjunct...Mechanical gearboxes are typically employed with doubly-fed induction generatur-based wind turbines. The main drawback of this solution is the gearbox's reliability and maintenance. Using magnetic gearbox in conjunction with the doubly-fed induction generator is an emerging alternative being promoted by the research community which maintains the reduced size doubly-fed machine and overcomes the mechanical gearbox problems reported by field experience. This paper proposes a novel magnetic gearbox configuration in which a conventional planetary magnetic gearbox is equipped with n-phase coils fitted around the ferromagnetic pole-pieces to extract output electrical power. The turbine mechanical power is thus divided into mechanical power to drive the electrical generator and extra electrical power that can be diverted into a storage system to perform the power leveling function. The proposed configuration can also be used to freely modify the power-speed characteristic as seen by the electrical generator, a highly needed feature for grid frequency support.展开更多
In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without ...In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without contact and so avoid contact-related problems. The present paper discusses magnet arrangements and the shape of stationary gear teeth to improve transmission torque in surface magnet type magnetic gear transmission mechanisms.展开更多
The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave ...The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave magnetic field is established. The calculation model is computed by using MATLAB software, and the pattern of the system’s torque-angle characteristic is obtained by analyzing study results. These results indicate that: torque-angle characteristic and the driving torque of the system can be adjusted by changing the electric current of coil, the magnetization of permanent magnetic gear, the inner diameter of permanent magnetic gear, the coupling distance between electromagnet and permanent magnetic gear, the outer diameter of permanent magnetic gear, and the axial length of permanent magnetic gear.展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers al...Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.展开更多
针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速...针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。展开更多
基金Supported by the National Basic Research Program of China under Grant No 2013CB922002the National Natural Science Foundation of China under Grant No 11474347
文摘We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.
基金supported by the National Natural Science Foundation of China(Grant No.51765020)the Natural Science Foundation of Jiangxi Province(Grant No.20161BAB206153).
文摘Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise,high failure rate,and short service time.Magneticfield modulation electromagnetic gear transmission is a new non-contact transmission method.However,the conventional modulation magnetic gear has low torque density and torque defects with largefluctuations.In order to overcome the gear transmis-sion problems of the existing semi-direct drive wind power generation machinery and improve the electromag-netic performance of the traditional magnetic gear transmission,this paper proposes a new transmission scheme of a non-contact semi-direct drive wind generator with a surface mount Halbach array modulated mag-netic gear method,and considers the electromagnetic properties of the semi-direct drive modulation magnetic gear of the wind turbine.Thefinite element software is used to construct the model of the surface-mounted Halbach array magnetic gear and the conventional gear,analyzed the distribution of magneticfield lines of the two magnetic gears,calculated the air gap magneticflux density of the inner and outer air gap,and obtained the main harmonics of the inner and outer air gap magnetic density;calculated the static torque and steady-state operating torque of the inner and outer rotors in the model,compared the air gapflux density,harmonics and torque of the magnetic gears.The simulation results show that the magneticfield modulation type mag-netic gear of the surface mount Halbach array magnetic gear method improves the magnetic induction wave-form of the inner and outer air gap,reduces the pulse torquefluctuation,and has a 60%higher static torque.Applying it to semi-direct drive wind power generation equipment not only overcomes the shortcomings of mechanical gears,but also has higher electromagnetic performance.Therefore,the surface-mounted Halbach array modulated magnetic gear can be used to replace the mechanical gearbox in the semi-direct drive wind power generation equipment.
文摘A cycloidal speed reducer employing gears with permanent magnets acting as teeth is described. The magnets, which have their axes radially oriented in both the orbiting gear and the fixed internal gear, are inserted in holes drilled in nonmagnetic rims without protruding from the cylindrical exposed surfaces. Because the orbiting gear is not restrained radially, it contacts the fixed gear and rolls on its inner surface. A normal force is developed at the contact point between the gears to balance the magnetic attraction and the centrifugal force of the orbiting gear. The friction available due to this normal force increases the transmission’s torque capacity, which is further increased by elimination of the gap between the gears. Also, the radial load on the supporting orbiting gear bearing is eliminated. A prototype with a reduction ratio of 26 is being tested.
文摘This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid of statistic summary of the published papers.According to different evolutions from a magnetic gear(MG),four mainstreams of MGd machines are extracted and compared in terms of both mechanical complexity and electromagnetic performance.By virtue of their inherent features,such as high torque density and multi-power port,the feasibility of MGd machines for applications,where continuously variable transmission(CVT)and power split are demanded,is also described.
文摘In this paper,a performance comparison between the novel axial flux magnetically geared machines(AFMG)and the conventional axial flux YASA machine is presented.The AFMG and YASA machines have the same stator construction in which segments are equipped with concentrated windings to form the stator.However,the AFMG machine has two rotors with different pole-pair numbers.Magnetic gear effect can be obtained to increase the torque density.The performance comparisons at no-load and on-load conditions are then studied by 3D-finite element analysis(FEM).Moreover,both machines are prototyped,tested and compared.
基金This work was supported in part by National Natural Science Foundation of ChinaChina Postdoctoral Science Foundation.(Project No.51707072,2018M632855)。
文摘Magnetic gear is a transmission device with novel structure.It uses the principle of magnetic field modulation to transmit torque.In view of the magnetic leakage of the magnetic gear in the process of rotation and cannot be eliminated,a magnetic gear model with auxiliary silicon steel sheet is proposed.Based on the conventional magnetic gear structure,the silicon steel sheet is placed outside the permanent magnet of the outer rotor.The magnetization mode of the outer rotor permanent magnet is tangential magnetization,and the spoke structure is adopted,and the inner rotor PMs is surface mounted and magnetized in the radial magnetization.The improved model is simulated by finite element method under three-dimensional conditions,and the electromagnetic performances of the model are optimized.Compared with the conventional magnetic gear model,the improved model has good performance,which improves the transmission capacity of output torque and reduces torque ripple.It is a great significance to improve the performance of magnetic gear.
基金supported in part by National Natural Science Foundation of China and China Postdoctoral Science Foundation.(Project No.51707072,2018M632855).
文摘In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and external rotors are distributed in Halbach array,the inner rotor PMs are equally divided into 3 small pieces,and the outer rotor PMs are equally divided into 2 small pieces.At the same time,the static magnetic modulation ring iron blocks are slotted,each iron block has 3 slots,the width of the slot is 0.4°,and the depth of the single side slot is 1mm.Finally,a two-dimensional model is established,and the eddy current loss and iron loss of the model are optimized,compared with the conventional CMG model,it is found that the changed pattern can increase the internal and external output torque by 4%and 4.12%,respectively.The eddy current loss is reduced by 66.57%,and the iron loss is reduced by 8.9%,which significantly improve the operation efficiency of the CMG.
文摘This paper presents a two-dimensional(2D)magnetic equivalent circuit(MEC)model to investigate the magnetic field distribution in the air-gap of an axial-field magnetic gear(AFMG).The MEC model is configured as a meshed reluctance network(RN)with permanent magnet magnetomotive-force sources.The MEC model based on RN is considered as a good compromise between accuracy and computational effort.This is a new model that will allow a faster analysis and design for the AFMG.Flux density in the air-gap is calculated with the proposed model and verified by finite element simulations.
文摘Mechanical gearboxes are typically employed with doubly-fed induction generatur-based wind turbines. The main drawback of this solution is the gearbox's reliability and maintenance. Using magnetic gearbox in conjunction with the doubly-fed induction generator is an emerging alternative being promoted by the research community which maintains the reduced size doubly-fed machine and overcomes the mechanical gearbox problems reported by field experience. This paper proposes a novel magnetic gearbox configuration in which a conventional planetary magnetic gearbox is equipped with n-phase coils fitted around the ferromagnetic pole-pieces to extract output electrical power. The turbine mechanical power is thus divided into mechanical power to drive the electrical generator and extra electrical power that can be diverted into a storage system to perform the power leveling function. The proposed configuration can also be used to freely modify the power-speed characteristic as seen by the electrical generator, a highly needed feature for grid frequency support.
文摘In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without contact and so avoid contact-related problems. The present paper discusses magnet arrangements and the shape of stationary gear teeth to improve transmission torque in surface magnet type magnetic gear transmission mechanisms.
文摘The principle and design method of the large gap magnetic drive system is studied in this work. The calculation model of the torque-angle characteristic in the large gap magnetic drive system driven by traveling wave magnetic field is established. The calculation model is computed by using MATLAB software, and the pattern of the system’s torque-angle characteristic is obtained by analyzing study results. These results indicate that: torque-angle characteristic and the driving torque of the system can be adjusted by changing the electric current of coil, the magnetization of permanent magnetic gear, the inner diameter of permanent magnetic gear, the coupling distance between electromagnet and permanent magnetic gear, the outer diameter of permanent magnetic gear, and the axial length of permanent magnetic gear.
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金financially supported by the National Natural Science Foundation of China(Nos.21776308 and 21908245)the Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC009)the China Postdoctoral Science Foundation(No.2018T110187)。
文摘Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.
文摘针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。