期刊文献+
共找到3,223篇文章
< 1 2 162 >
每页显示 20 50 100
Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems 被引量:4
1
作者 Ali Azarbahram Amir Amini Mahdi Sojoodi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1139-1151,共13页
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont... The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system. 展开更多
关键词 Dynamic OUTPUT FEEDBACK control interconnected multi-area POWER systems load frequency control linear MATRIX INEQUALITIES POWER system control
下载PDF
Finite Frequency Fuzzy H∞Control for Uncertain Active Suspension Systems With Sensor Failure 被引量:5
2
作者 Zhenxing Zhang Hongyi Li +1 位作者 Chengwei Wu Qi Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期777-786,共10页
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f... This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Active vehicle suspension systems finite frequency control sensor failure Takagi-Sugeno fuzzy model
下载PDF
Addressing Frequency Control Challenges in Future Low-Inertia Power Systems:A Great Britain Perspective 被引量:2
3
作者 Qiteng Hong Md Asif Uddin Khan +3 位作者 Callum Henderson AgustíEgea-Àlvarez Dimitrios Tzelepis Campbell Booth 《Engineering》 SCIE EI 2021年第8期1057-1063,共7页
The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction ... The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction in system inertia,the transmission system in Great Britain(GB)faces some unique challenges owing to its relatively small capacity,while being decoupled from other transmission systems and with the renewable resources largely non-uniformly distributed across the system.This paper presents opinions and insights on the challenges associated with frequency control in a low-inertia system and the potential solutions from a GB perspective.In this paper,we focus on three main techniques that act over different time scales:synchronous condensers,inertia emulation,and fast frequency response.We evaluate their relative advantages and limitations with learnings from recent research and development projects in GB,along with the opinions on their roles in addressing the frequency control challenges in future low-inertia systems. 展开更多
关键词 Fast frequency control Inertia emulation Synchronous compensation Low-inertia systems
下载PDF
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:2
4
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:5
5
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
下载PDF
H_∞ Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range 被引量:1
6
作者 Cuihong Wang Huanhuan Li YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期304-310,共7页
This paper focuses on the H∞output feedback control problem of linear time-invariant fractional-order systems over finite frequency range. Based on the generalized Kalman-Yakubovic-Popov (KYP) Lemma and a key project... This paper focuses on the H∞output feedback control problem of linear time-invariant fractional-order systems over finite frequency range. Based on the generalized Kalman-Yakubovic-Popov (KYP) Lemma and a key projection lemma, a necessary and sufficient condition is established to ensure the existence of the H∞output feedback controller over finite frequency range, a desirable property in control engineering practice. By using the matrix congruence transformation, the feedback control gain matrix is decoupled and further parameterized by a scalar matrix. Two iterative linear matrix inequality algorithms are developed to solve this problem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGEBRA Feedback control Iterative methods Linear matrix inequalities Linear transformations Matrix algebra Numerical methods
下载PDF
Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign 被引量:1
7
作者 Chang-Liang Liu Shao-Cheng Tong +1 位作者 Yong-Ming Li Yuan-Qing Xia 《International Journal of Automation and computing》 EI 2011年第1期14-22,共9页
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn... In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method. 展开更多
关键词 Nonlinear systems adaptive fuzzy control time-delay high-frequency gain sign BACKSTEPPING K-filters stability.
下载PDF
Frequency Response Design Method for PDFSV Control of Electrohydraulic Servo Systems
8
作者 Xu Mingheng School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 《Journal of Modern Transportation》 1997年第1期63-69,共7页
The frequency response design method for PDFSV (Pseudo Derivative Feedback Subvariable) control of electrohydraulic servo system is introduced. Theoretical analysis and computer simulation show that PDFSV con... The frequency response design method for PDFSV (Pseudo Derivative Feedback Subvariable) control of electrohydraulic servo system is introduced. Theoretical analysis and computer simulation show that PDFSV control is a high robust system, and a very good performance can be obtained when this theory is employed in electrohydraulic servo system. 展开更多
关键词 PDFSV control frequency response design electrohydraulic servo system
下载PDF
Model-Free Adaptive Frequency Calibration for Voltage-Controlled Oscillators
9
作者 Lianghui Xie Zhi Quan +1 位作者 Osama Elnaha Qinglin Zhao 《China Communications》 SCIE CSCD 2023年第1期199-208,共10页
The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application... The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs. 展开更多
关键词 frequency calibration carrier frequency offset MODEL-FREE adaptive control wireless communication systems
下载PDF
Ant Lion Optimization Approach for Load Frequency Control of Multi-Area Interconnected Power Systems
10
作者 R. Satheeshkumar R. Shivakumar 《Circuits and Systems》 2016年第9期2357-2383,共27页
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ... This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices. 展开更多
关键词 Load frequency control (LFC) Multi-Area Power system Proportional-Integral (PI) controller Ant Lion Optimization (ALO) Bat Algorithm (BAT) Genetic Algorithm (GA) Particle Swarm Optimization (PSO)
下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:16
11
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems Model predictive control Optimization Press load control WIND Wind turbines
下载PDF
A Priority-aware Frequency Domain Polling MAC Protocol for OFDMA-based Networks in Cyber-physical Systems 被引量:1
12
作者 Meng Zheng Junru Lin +1 位作者 Wei Liang Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第4期412-421,共10页
Wireless networking in cyber-physical systems (CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and relia... Wireless networking in cyber-physical systems (CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and reliability constraints. One of the fundamental considerations for enabling CPS networks is the medium access control protocol. To this end, this paper proposes a novel priority-aware frequency domain polling medium access control (MAC) protocol, which takes advantage of an orthogonal frequency-division multiple access (OFDMA) physical layer to achieve instantaneous priority-aware polling. Based on the polling result, the proposed work then optimizes the resource allocation of the OFDMA network to further improve the data reliability. Due to the non-polynomial-complete nature of the OFDMA resource allocation, we propose two heuristic rules, based on which an efficient solution algorithm to the OFDMA resource allocation problem is designed. Simulation results show that the reliability performance of CPS networks is significantly improved because of this work. © 2014 Chinese Association of Automation. 展开更多
关键词 Access control Embedded systems frequency domain analysis Medium access control Network layers Orthogonal frequency division multiplexing POLYNOMIALS Real time systems Reliability Resource allocation Wireless networks
下载PDF
Robust H_∞ Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach 被引量:6
13
作者 Yonghui Sun Yingxuan Wang +2 位作者 Zhinong Wei Guoqiang Sun Xiaopeng Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期610-617,共8页
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re... This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results. 展开更多
关键词 Index Terms--Load frequency control (LFC) multi-area powersystem robust control sliding mode control (SMC) time delay.
下载PDF
Novel Adaptive Neural Controller Design Based on HVDC Transmission System to Damp Low Frequency Oscillations and Sub Synchronous Resonance
14
作者 Samad Goli Ahad Goli Naser Taheri 《Energy and Power Engineering》 2015年第10期451-464,共14页
This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power... This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power system. Also, a novel adaptive neural controller based on neural identifier is proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). For comparison purposes, results of system based damping neural controller are compared with a lead-lag controller based on quantum particle swarm optimization (QPSO). It is shown that implementing adaptive damping controller not only improves the stability of power system but also can overcome drawbacks of conventional compensators with fixed parameters. In order to determine the most effective input of HVDC system to apply supplementary controller signal, analysis based on singular value decomposition is performed. To evaluate the performance of the proposed controller, transient simulations of detailed nonlinear system are considered. 展开更多
关键词 SYNCHRONOUS RESONANCE Neural Network Damping controller Quantum Particle SWARM Optimization HVDC Transmission systems Low frequency OSCILLATIONS
下载PDF
DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM 被引量:1
15
作者 YU Yilong LIU Changwen +2 位作者 YANG Yanxiang WANG Shuang ZHANG Junhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期41-47,共7页
Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrati... Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations. 展开更多
关键词 Actuators Low frequency vibration Active control Large-scale rotation shafts system development
下载PDF
Coordinated Frequency Control for Isolated Power Systems with High Penetration of DFIG-Based Wind Power
16
作者 Xin Ding Wei Lin +3 位作者 Jian Xu Yuanzhang Sun Liangzhong Yao Beilin Mao 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1399-1414,共16页
This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind power.The proposed frequency control strategy is based on the nov... This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind power.The proposed frequency control strategy is based on the novel nonlinear regulator theory,which takes advantage of nonlinearity of doubly fed induction generators(DFIGs)and generators to regulate the frequency of the power system.Frequency deviations and power imbalances are used to design nonlinear feedback controllers that achieve the reserve power distribution between generators and DFIGs,in various wind speed scenarios.The effectiveness and dynamic performance of the proposed nonlinear coordinated frequency control method are validated through simulations in an actual isolated power grid. 展开更多
关键词 frequency control isolated power systems nonlinear feedback nonlinear regulator theory wind power
原文传递
Frequency Control of Power System with Renewable Power Sources by HVDC Interconnection Line and Battery Considering Energy Balancing
17
作者 Shoyu Onuka Atsushi Umemura +4 位作者 Rion Takahashi Junji Tamura Atsushi Sakahara Fumihito Tosaka Ryosuke Nakamoto 《Journal of Power and Energy Engineering》 2020年第4期11-24,共14页
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie... Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line. 展开更多
关键词 High Voltage Direct Current (HVDC) Transmission POWER system frequency control COORDINATED control BATTERY RENEWABLE POWER Energy Balancing
下载PDF
Frequency Control of Power System with Solar and Wind Power Stations by Using Frequency Band Control and Deadband Control of HVDC Interconnection Line
18
作者 Kimiko Tada Takamasa Sato +5 位作者 Atsushi Umemura Rion Takahashi Junji Tamura Yoshiharu Matsumura Tsukasa Taguchi Akira Yamada 《Journal of Power and Energy Engineering》 2018年第9期48-63,共16页
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu... In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model. 展开更多
关键词 High Voltage Direct Current (HVDC) system frequency control PV POWER GENERATION Wind POWER GENERATION Notch Filter Deadband
下载PDF
An Algebraic Detection Approach for Control Systems under Multiple Stochastic Cyber-attacks 被引量:2
19
作者 Yumei Li Holger Voos +1 位作者 Mohamed Darouach Changchun Hua 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期258-266,共9页
In order to compromise a target control system successfully, hackers possibly attempt to launch multiple cyberattacks aiming at multiple communication channels of the control system. However, the problem of detecting ... In order to compromise a target control system successfully, hackers possibly attempt to launch multiple cyberattacks aiming at multiple communication channels of the control system. However, the problem of detecting multiple cyber-attacks has been hardly investigated so far. Therefore, this paper deals with the detection of multiple stochastic cyber-attacks aiming at multiple communication channels of a control system. Our goal is to design a detector for the control system under multiple cyberattacks. Based on frequency-domain transformation technique and auxiliary detection tools, an algebraic detection approach is proposed. By applying the presented approach, residual information caused by different attacks is obtained respectively and anomalies in the control system are detected. Sufficient and necessary conditions guaranteeing the detectability of the multiple stochastic cyber-attacks are obtained. The presented detection approach is simple and straightforward. Finally, two simulation examples are provided, and the simulation results show that the detection approach is effective and feasible. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGEBRA Communication channels (information theory) control systems CRIME frequency domain analysis Personal computing Stochastic systems
下载PDF
Design of Nichols PID Controller for Load Frequency Control 被引量:10
20
作者 KONG Fannie LI Xiaocong +1 位作者 WU Jiekang GUO Zhuangzhi 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0011-I0011,15,共1页
为解决互联水电系统负荷频率控制(load frequencycontrol,LFC)问题,及保持互联电网系统频率、联络线功率及区域控制误差(area control error,ACE)的稳定,根据闭环系统谐振峰值与系统响应最大峰值之间的关系,构建一个与系统参数及控... 为解决互联水电系统负荷频率控制(load frequencycontrol,LFC)问题,及保持互联电网系统频率、联络线功率及区域控制误差(area control error,ACE)的稳定,根据闭环系统谐振峰值与系统响应最大峰值之间的关系,构建一个与系统参数及控制器参数都相关的优化问题,通过该问题的求解获得控制器参数与系统参数之间的数学关系,针对水轮发电系统非最小相位特性,通过串加比例–微分(proportional-derivative,PD)控制方式降低系统阶次,设计尼科尔斯(Nichols)曲线的比例–积分–微分(proportional-integral-derivative,PID)控制器。基于模型参数扰动和负荷干扰的仿真结果表明:尼科尔斯PID控制器能快速调整系统频率偏差、联络线功率偏差及ACE为0,具有良好的鲁棒性能和抗负荷干扰性能,系统过渡过程性能明显优于传统PID调节器结果。 展开更多
关键词 负荷频率控制 PID控制器 设计 区域控制误差 自动控制理论 电力系统稳定 水电系统 提出问题
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部