Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal...Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,ac...The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,achieving efficient cooling in limited space has become a key problem in updating electronic devices with high performance and high integration.Two-phase immersion is a novel cooling method.The computational fluid dynamics(CFD)method is used to investigate the cooling performance of two-phase immersion cooling on high-power electronics.The two-dimensional CFD model is utilized by the volume of fluid(VOF)method and Reynolds StressModel.Lee’s model was employed to calculate the phase change rate.The heat transfer coefficient along the heatedwalls and the shear-lift force on bubbles are calculated.The simulation data are verified with the literature results.The cooling performance of different coolants has been studied.The results indicate that the boiling heat transfer coefficient can be enhanced by using a low boiling point coolant.The methanol is used as the cooling medium for further research.In addition,the mass flow rate and inlet temperature are investigated to assess the thermal performance of twophase immersion cooling.The average temperature of the high-power electronics is 80℃,and the temperature difference can be constrained to 8℃.Meanwhile,the convective heat transfer coefficient reaches 2740 W/(m^(2)・℃)when the inlet temperature is 50℃,and the mass flow rate is 0.3 kg/s.In conclusion,the results demonstrated that two-phase immersion cooling has provided an effective method for the thermal management of high-power electronics.展开更多
In recent years,significant development activity has been seen in battery electric and hydrogen locomotives.To fully understand the potential benefits of these zero-emission technologies and their application in locom...In recent years,significant development activity has been seen in battery electric and hydrogen locomotives.To fully understand the potential benefits of these zero-emission technologies and their application in locomotive design,a design study utilising a digital twin framework can be employed.While current research on the use of digital twins for battery and hydrogen-powered rail vehicles is limited,recent studies conducted at the Centre for Railway Engineering at CQUniversity indicate potential challenges with implementing standard 6-axle locomotives for zero-emission designs considering heavy haul operational needs and scenarios.These challenges are related to limitations in energy storage capacity and optimisation of train operation scenarios.By considering an 8-axle locomotive design concept and employing a digital twin framework in the design process,a more comprehensive assessment of conceptual development,design and requirements can be achieved.This will ensure the locomotive design meets standards,guidelines,and codes of practice,ultimately contributing to achieving net-zero emission goals in loco-motive traction.展开更多
Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconduc...Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconductor materials in high-power electronic devices. The research first compares the physical properties of major wide bandgap materials (such as silicon carbide SiC and gallium nitride GaN), analyzing their advantages over traditional silicon materials. Through theoretical calculations and experimental data analysis, the study assesses the performance of these materials in terms of high breakdown field, high thermal conductivity, and high electron saturation velocity. The research focuses on the application of SiC and GaN devices in power electronics, including high-voltage DC transmission, electric vehicle drive systems, and renewable energy conversion. The study also discusses the potential of wide bandgap materials in RF and microwave applications. However, the research also points out the challenges faced by wide bandgap semiconductor technology, such as material defect control, device reliability, and cost issues. To address these challenges, the study proposes solutions, including improving epitaxial growth techniques, optimizing device structure design, and developing new packaging methods. Finally, the research looks ahead to the prospects of wide bandgap semiconductors in emerging application areas such as quantum computing and terahertz communications. This study provides a comprehensive theoretical foundation and technology roadmap for the application of wide bandgap semiconductor materials in high-power electronic devices, contributing to the development of next-generation high-efficiency energy conversion and management systems.展开更多
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch...Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.展开更多
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain met...Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.展开更多
To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with tit...To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with titanium metal as the solid plasma source in a mixed ArC2H2 atmosphere. The films were fabricated to obtain a multilayered structure of Ti/TiC/DLC gradient for improving adhesion and reducing residual stress. The effects of substrate bias and target-substrate distance on the films' properties were studied by glow discharge spectroscope, X-ray diffractometer, Raman spectroscope, nanoindenter, and a pin-on-disk tribometer. The results indicate that the films possess superior adhesive strength and toughness.展开更多
Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the ...Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.展开更多
In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algor...In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.展开更多
A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of ...A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.展开更多
Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models ...Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.展开更多
Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected ...Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected packaging materials.In this paper,the aluminum is employed as a substrate of LED,3×3 array chips are placed on the substrate,heat dissipation performance is simulated using finite element analysis(FEA)software,analyzed are the influences on the temperature of the chip with different convection coefficient,and optical properties are simulated using optical analysis software.The results show that the packaging structure can not only effectually improve the thermal performance of high-power LED array but also increase the light extraction efficiency.展开更多
To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomo...To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.展开更多
To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k...To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.展开更多
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe...Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.展开更多
We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the...We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.展开更多
The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrie...The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.展开更多
基金financially supported by the Shenzhen Science and Technology Program (JCYJ20200109105805902,JCYJ20220818095805012)the National Natural Science Foundation of China (22208221,22178221,42377487)+2 种基金the Scientific and Technological Plan of Guangdong Province (2019B090905005,2019B090911004)the Natural Science Foundation of Guangdong Province (2021A1515110751)the Guangdong Basic and Applied Basic Research Foundation (2022A1515110477,2021B1515120004)。
文摘Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
基金support from the Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province,China(Grant No.2021MFRSE-C01)the Natural Science Foundation of Gansu Province,China(No.22JR5RA269)Fujian Province Science Foundation for Youths,China(No.2020305069).
文摘The power density of electronic components grows continuously,and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability,reliability and service life.Therefore,achieving efficient cooling in limited space has become a key problem in updating electronic devices with high performance and high integration.Two-phase immersion is a novel cooling method.The computational fluid dynamics(CFD)method is used to investigate the cooling performance of two-phase immersion cooling on high-power electronics.The two-dimensional CFD model is utilized by the volume of fluid(VOF)method and Reynolds StressModel.Lee’s model was employed to calculate the phase change rate.The heat transfer coefficient along the heatedwalls and the shear-lift force on bubbles are calculated.The simulation data are verified with the literature results.The cooling performance of different coolants has been studied.The results indicate that the boiling heat transfer coefficient can be enhanced by using a low boiling point coolant.The methanol is used as the cooling medium for further research.In addition,the mass flow rate and inlet temperature are investigated to assess the thermal performance of twophase immersion cooling.The average temperature of the high-power electronics is 80℃,and the temperature difference can be constrained to 8℃.Meanwhile,the convective heat transfer coefficient reaches 2740 W/(m^(2)・℃)when the inlet temperature is 50℃,and the mass flow rate is 0.3 kg/s.In conclusion,the results demonstrated that two-phase immersion cooling has provided an effective method for the thermal management of high-power electronics.
文摘In recent years,significant development activity has been seen in battery electric and hydrogen locomotives.To fully understand the potential benefits of these zero-emission technologies and their application in locomotive design,a design study utilising a digital twin framework can be employed.While current research on the use of digital twins for battery and hydrogen-powered rail vehicles is limited,recent studies conducted at the Centre for Railway Engineering at CQUniversity indicate potential challenges with implementing standard 6-axle locomotives for zero-emission designs considering heavy haul operational needs and scenarios.These challenges are related to limitations in energy storage capacity and optimisation of train operation scenarios.By considering an 8-axle locomotive design concept and employing a digital twin framework in the design process,a more comprehensive assessment of conceptual development,design and requirements can be achieved.This will ensure the locomotive design meets standards,guidelines,and codes of practice,ultimately contributing to achieving net-zero emission goals in loco-motive traction.
文摘Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconductor materials in high-power electronic devices. The research first compares the physical properties of major wide bandgap materials (such as silicon carbide SiC and gallium nitride GaN), analyzing their advantages over traditional silicon materials. Through theoretical calculations and experimental data analysis, the study assesses the performance of these materials in terms of high breakdown field, high thermal conductivity, and high electron saturation velocity. The research focuses on the application of SiC and GaN devices in power electronics, including high-voltage DC transmission, electric vehicle drive systems, and renewable energy conversion. The study also discusses the potential of wide bandgap materials in RF and microwave applications. However, the research also points out the challenges faced by wide bandgap semiconductor technology, such as material defect control, device reliability, and cost issues. To address these challenges, the study proposes solutions, including improving epitaxial growth techniques, optimizing device structure design, and developing new packaging methods. Finally, the research looks ahead to the prospects of wide bandgap semiconductors in emerging application areas such as quantum computing and terahertz communications. This study provides a comprehensive theoretical foundation and technology roadmap for the application of wide bandgap semiconductor materials in high-power electronic devices, contributing to the development of next-generation high-efficiency energy conversion and management systems.
基金Project (51175095) supported by the National Natural Science Foundation of ChinaProjects (10251009001000001,9151009001000020) supported by the Natural Science Foundation of Guangdong Province,ChinaProject (20104420110001) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
基金Project supported by the National Key Laboratory Foundation,China(Grant No.9140C530103110C5301)
文摘Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
文摘To improve the characteristics of a diamond-like carbon (DLC) film, Ti-containing amorphous hydrogenated carbon thin films were deposited on sus304 stainless steel substrates by high-power plasma-sputtering with titanium metal as the solid plasma source in a mixed ArC2H2 atmosphere. The films were fabricated to obtain a multilayered structure of Ti/TiC/DLC gradient for improving adhesion and reducing residual stress. The effects of substrate bias and target-substrate distance on the films' properties were studied by glow discharge spectroscope, X-ray diffractometer, Raman spectroscope, nanoindenter, and a pin-on-disk tribometer. The results indicate that the films possess superior adhesive strength and toughness.
文摘Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.
文摘A two-dimensional model of the silicon NPN monolithic composite transistor is established for the first time by utilizing the semiconductor device simulator, Sentaurus-TCAD. By analyzing the internal distributions of electric field, current density, and temperature of the device, a detailed investigation on the damage process and mechanism induced by high-power microwaves (HPM) is performed. The results indicate that the temperature elevation occurs in the negative half-period and the temperature drop process is in the positive half-period under the HPM injection from the output port. The damage point is located near the edge of the base-emitter junction of T2, while with the input injection it exists between the base and the emitter of T2. Comparing these two kinds of injection, the input injection is more likely to damage the device than the output injection. The dependences of the damage energy threshold and the damage power threshold causing the device failure on the pulse-width are obtained, and the formulas obtained have the same form as the experimental equations, which demonstrates that more power is required to destroy the device if the pulse-width is shorter. Furthermore, the simulation result in this paper has a good coincidence with the experimental result.
基金supported by the National Natural Science Foundation of China (No. 71101007)the National High Technology Research and Development Program of China (No. 2011AA110502)State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University Program (RCS2010ZZ001)
文摘Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.
基金Key Scientific and Technological Research Projects of Henan Province(072102240027)Dr Foundation of Henan Polytechnic University(648602)Postgraduate Degree Thesis Innovation Foundation of Henan Polytechnic University(644005)
文摘Thermal management is one of the key technologies for high-power Light emitting diode(LED)entering into the general illuminating field.Successful thermal management depends on optimal packaging structure and selected packaging materials.In this paper,the aluminum is employed as a substrate of LED,3×3 array chips are placed on the substrate,heat dissipation performance is simulated using finite element analysis(FEA)software,analyzed are the influences on the temperature of the chip with different convection coefficient,and optical properties are simulated using optical analysis software.The results show that the packaging structure can not only effectually improve the thermal performance of high-power LED array but also increase the light extraction efficiency.
基金Projects(52072249,51605315)supported by the National Natural Science Foundation of ChinaProject(E2018210052)supported by the Natural Science Foundation of Hebei Province,ChinaProject(TPL1707)supported by the Open Funds for the State Key Laboratory of Traction Power,China。
文摘To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.
基金Project supported by Yifang Wang’s Science Studio of the Ten Thousand Talents Project。
文摘To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.
基金support from the Na-tional Natural Science Foundation of China(Grant No.41827806)the liaoning Revitalization Talent Program of China(Grant No.XLYCYSZX1902).
文摘Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904132 and 11074225)the National Defense Science Technology Foundation of State Key Laboratory of High Temperature and Density Plasma Physics,China (Grant No. 9140C680604110C6805)
文摘We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.
基金Project supported by the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.