In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier dischar...In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d = 0 mm) and volume added surface barrier discharges (d = 2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3 ∏u → B3∏g) and N2+ (B2 ∑u+ → X2 ∑g+), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d = 0 mm structure can excite the largest emission intensity of N2 (C3 ∏u → B3 ∏g), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2 + (B2 ∑u+ → X2 ∑+g)/N2 (C3 ∏u → B3 ∏g) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d = 3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2 (C3 ∏u→ B3∏g) than that of d = 2 mm structure. The structure of d = 2 mm can maintain more increasing factor than that of the d = 3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.展开更多
Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the dischar...Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology,gas temperature,electron density,and excited species.The evolution of micro-discharges is captured by intensified CCD camera and electrical properties.The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A^(2)Σ^(+)–X^П(2),0–0)emission band and is found to remain low at 425 K during the discharge pulses.The profile of electron density performed by the Stark broadening of Ha 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 10^(23)m^(-3).The excited species of He,OH,and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities,which are discussed qualitatively in regard of their plasma kinetics.展开更多
Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising met...Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.展开更多
Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, an...Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of N2(C3Ⅱg→B3Ⅱg, △v=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm-3 according to the Stark broadening effect of the Ha line.展开更多
The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolutio...The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.展开更多
In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–v...In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,andNO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species(OH(A),and O(3p))in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1of gas flow rate.The absorbance intensities of NO2and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species(N2(C),OH(A),and O(3p)),nitrogen oxides(NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,andNO3-compared with both unipolar positive and negative discharges.展开更多
Dielectric barrier discharge(DBD) attracts lots of attentions for its great application promises,and the rotational temperature is one of its mostly important parameters.In order to measure the rotational temperature ...Dielectric barrier discharge(DBD) attracts lots of attentions for its great application promises,and the rotational temperature is one of its mostly important parameters.In order to measure the rotational temperature of a pulsed DBD in atmospheric air,the temperature is studied by using optical emission spectroscopy(OES).The discharge is excited by a high voltage pulse with 124 ns rise time and 230 ns full width at half maximum(FWHM) at a repetition rate of a few hundred hertz.The rotational temperatures are studied using different voltages,different repetition rates of the pulse power supply,and different gaps between dielectrics: They are in the range from 390 K to 500 K during the whole discharge.When the gap between dielectrics increases,the rotational temperature initially decreases and then increases.The rotational temperature changes complexly when the pulse repetition rate changes.When the voltage increases,the rotational temperature always decreases,which is not expected.These results allow one to predict the rotational temperature at different supply power parameters and electrode configurations,which is useful for the DBD's industrial application.展开更多
In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical r...In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.展开更多
An efficient two-stage KTi OAO4 optical parametric amplifier(OPA) system with walk-off-compensating alignment is designed. By introducing an extra time delay between the pump pulse and the signal pulse, this OPA archi...An efficient two-stage KTi OAO4 optical parametric amplifier(OPA) system with walk-off-compensating alignment is designed. By introducing an extra time delay between the pump pulse and the signal pulse, this OPA architecture is capable of obtaining high optical conversion efficiency and high signal gain simultaneously.Finally, a maximum gain of 98 at the 1.57 μm wavelength is obtained with the signal beam quality of M2 around5.6. The efficiency of the optical conversion from 1.064 to 1.57 μm is around 26%.展开更多
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
基金supported by National Key R&D Program of China (2016YFC0207200)National Natural Science Foundation of China (Nos. 51377014, 51407022 and 51677019)
文摘In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d = 0 mm) and volume added surface barrier discharges (d = 2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3 ∏u → B3∏g) and N2+ (B2 ∑u+ → X2 ∑g+), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d = 0 mm structure can excite the largest emission intensity of N2 (C3 ∏u → B3 ∏g), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2 + (B2 ∑u+ → X2 ∑+g)/N2 (C3 ∏u → B3 ∏g) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d = 3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2 (C3 ∏u→ B3∏g) than that of d = 2 mm structure. The structure of d = 2 mm can maintain more increasing factor than that of the d = 3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.
基金supported by the National Natural Science Foundation of China(Grant No.51806186)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB140025)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20181050)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Grant No.XJR2020)。
文摘Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology,gas temperature,electron density,and excited species.The evolution of micro-discharges is captured by intensified CCD camera and electrical properties.The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A^(2)Σ^(+)–X^П(2),0–0)emission band and is found to remain low at 425 K during the discharge pulses.The profile of electron density performed by the Stark broadening of Ha 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 10^(23)m^(-3).The excited species of He,OH,and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities,which are discussed qualitatively in regard of their plasma kinetics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378030 and 11127901)the National Basic Research Program of China(Grant No.2011CB808101)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.
基金supported by National Natural Science Foundation of China(Grant Nos.51677019)National Key Research and Development Program of China(2016YFC0207200)
文摘Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of N2(C3Ⅱg→B3Ⅱg, △v=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm-3 according to the Stark broadening effect of the Ha line.
基金supported by National Natural Science Foundation of China (Nos.10875023,11175035)the Ph.D research program(No.200801411040 ) of Educational Ministry+1 种基金the Scientific and Technical Foundation of Liaoning Province (No.20082168)National Magnetic Confinement Fusion Science Program of China (Nos.2009GB106004,2008CB717801)
文摘The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.
基金supported by National Natural Science Foundation of China(Nos.51977023,51677019,and 11965018)Fundamental Research Funds for the Central Universities in China(No.DUT18LK42)。
文摘In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,andNO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species(OH(A),and O(3p))in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1of gas flow rate.The absorbance intensities of NO2and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species(N2(C),OH(A),and O(3p)),nitrogen oxides(NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,andNO3-compared with both unipolar positive and negative discharges.
基金Project supported by National Nature Science Foundation of China (11035004), Double Hundred Talent Foundation of CAEP (2009R0102), Key Laboratory of Puised Power of CAEP Science and Technology Development Foundation (2008B040237).
文摘Dielectric barrier discharge(DBD) attracts lots of attentions for its great application promises,and the rotational temperature is one of its mostly important parameters.In order to measure the rotational temperature of a pulsed DBD in atmospheric air,the temperature is studied by using optical emission spectroscopy(OES).The discharge is excited by a high voltage pulse with 124 ns rise time and 230 ns full width at half maximum(FWHM) at a repetition rate of a few hundred hertz.The rotational temperatures are studied using different voltages,different repetition rates of the pulse power supply,and different gaps between dielectrics: They are in the range from 390 K to 500 K during the whole discharge.When the gap between dielectrics increases,the rotational temperature initially decreases and then increases.The rotational temperature changes complexly when the pulse repetition rate changes.When the voltage increases,the rotational temperature always decreases,which is not expected.These results allow one to predict the rotational temperature at different supply power parameters and electrode configurations,which is useful for the DBD's industrial application.
文摘In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LY15F050007
文摘An efficient two-stage KTi OAO4 optical parametric amplifier(OPA) system with walk-off-compensating alignment is designed. By introducing an extra time delay between the pump pulse and the signal pulse, this OPA architecture is capable of obtaining high optical conversion efficiency and high signal gain simultaneously.Finally, a maximum gain of 98 at the 1.57 μm wavelength is obtained with the signal beam quality of M2 around5.6. The efficiency of the optical conversion from 1.064 to 1.57 μm is around 26%.