A persistent challenge for Oman's energy infrastructure was the deafening rumble of diesel generators. The Silent Generator Project addressed this challenge, developing advanced generators that deliver power quiet...A persistent challenge for Oman's energy infrastructure was the deafening rumble of diesel generators. The Silent Generator Project addressed this challenge, developing advanced generators that deliver power quietly and efficiently. Diesel generators have historically been notorious for being noisy and vibrational, making them unsuitable for sensitive environments. To dramatically reduce noise levels, the project utilized innovative materials and design modifications to ensure reliable and quiet electricity for various applications. In all directions, the project advanced the knowledge of noise reduction through rigorous testing and meticulous integration of insulators and mufflers. As a result, quieter, more sustainable energy production is on the way, marking a major advance in silent generator technology. Furthermore, the Silent Generator Project lays the foundation for more efficient and environmentally friendly diesel generator technologies in the future. As a result of this research, a new standard for quieter, greener energy generation is established, demonstrating the critical role noise reduction plays in energy generation. Additionally, this work also suggests future diesel generator technologies that are more efficient and environmentally friendly. As a result of this research, a new standard for quieter, greener energy generation is set, demonstrating the critical role noise reduction plays in energy generation.展开更多
For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent...For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.展开更多
This paper presents the modeling, simulation and practical implementation of an inverter-based diesel generator emulator. The main purpose of this emulator is for the study of frequency variations in diesel-based auto...This paper presents the modeling, simulation and practical implementation of an inverter-based diesel generator emulator. The main purpose of this emulator is for the study of frequency variations in diesel-based autonomous power systems in a laboratory environment where the operation of a real diesel generator is not possible. The emulator basically consists in a voltage source inverter with a second order output filter which voltage references are given by the model of the diesel generator. The control of the emulator is based on the digital signal processor TMS320F2812, where the mathematical models of the diesel generator and the control of the inverter are computed in real-time. Parameters for the model were obtained from commercially available components. Experimental results for different values of speed droop showed that the emulator achieves a satisfactory performance in the transient and stationary response. For the stationary response, the measured frequency deviates from theoretical values with a mean absolute error of: 0.06 Hz for 0% droop, 0.037 Hz for 3% droop, and 0.087 Hz for 5% droop. For the transient response, the measured frequency nadir deviates from simulations in: 0.05 Hz for 0% droop, 0.02 Hz for 3% droop, and 0.1 Hz for 5% droop.展开更多
One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and r...One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and rotational speed of the diesel engine will maintain the combustion efficiency near the levels of the nominal regime. Accordingly, the generator itself should operate at a variable speed which normally requires power electronics converters. In this paper, we are exploring a new generator concept that uses a stator rotating in opposite direction to the rotor such as the relative velocity between the two components remains constant when diesel engine slows down. The stator itself is driven by a compensator synchronous motor (CM) such as the relative velocity of the rotor is constant, eliminating as such sophisticated power electronics. The model developed for the synchronous machine with a rotating stator is based on Park’s transformation. This new concept was modelled using MATLAB software. Experimental analysis has been conducted using a 500-kW diesel GENSET equipped with a permanent magnet synchronous generator (PMSG). The numerical and experimental results are in good agreement and demonstrate that fuel consumption is reduced with a rotating-mode stator for PMSG during low electrical loads.展开更多
This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel genera...This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel generators to reduce the electricity bills for customers is carried out by using the hybrid optimization model for electric renewable(HOMER)software. The size of the standby diesel generator and its operational duration are determined based on the lowest cost of electricity obtained from the evaluations. The economic assessments demonstrate that there is potential to reduce the electricity bills for commercial and industrial customers under the existing fuel price and tariffs. The commercial customers under the tariff C2 have the highest potential to save their electricity bills with the use of standby diesel generators for peak reduction. This study demonstrates the potential of the standby diesel generators in peak reduction.展开更多
The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic ...The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic condition and/or at low loads. In addition, extended operation of the diesel generator at partial load develops the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency of the equipment and increases its fuel consumption. On the other hand, recent regulatory changes have led to ever more stringent and evolving emission standards. Among these, the International Maritime Organization (IMO) and the Environmental Protection Agency (EPA) have implemented emission standards in order to reduce exhaust gas emitted by marine diesel engines. To phase lower emission engines as soon as possible, a Tier system was adopted. This paper presents a literature review of existing technologies available to optimize the energy performance of diesel engines and diesel generators in order to reduce the cost of electricity, to increase the diesel engine efficiency and to decrease their fuel consumption and greenhouse gases (GHG) emissions. The proposed optimization methodologies are based on the application of Pre-treatment, Internal treatment and Post-treatment technologies for diesel engines and on the application of mechanical and electrical technologies for diesel power generators (DPGs). The list of references given at the end of the paper should offer aids for students and researchers working in this field.展开更多
To improve the living standards,economical efficiency and environmental protection of isolated islands,remote areas and other areas with weak electric power facilities construction,a multi-source independent microgrid...To improve the living standards,economical efficiency and environmental protection of isolated islands,remote areas and other areas with weak electric power facilities construction,a multi-source independent microgrid system is studied,including diesel generators,photovoltaic power generation system,wind power generation system and energy storage unit.Meanwhile,in order to realize the voltage and frequency stability control of AC bus of multisource microgrid,the virtual synchronous generator technology is introduced into the energy storage unit,and the charge and discharge control of the energy storage battery are simulated as the control behavior characteristics of synchronous motors,so as to provide damping and inertia support for the microgrid.The operation mode and control principle of each energy subsystem are expounded and analyzed.The algorithm principle of virtual synchronous generator and the control method of energy storage unit are given.Then,the working modes of the microgrid system under different environmental conditions are analyzed,and the multi-source microgrid system simulation model is built based on MATLAB/Simulink.The simulation results show that the microgrid system can run stably under different working modes and the energy storage unit using the virtual synchronous generator technology can provide good voltage and frequency support for the microgrid system.Finally,experiments verify the supporting function of energy storage unit on the voltage and frequency of the microgrid system.展开更多
This paper introduces an applicable test plan for emergency diesel generator in nuclear power plant. It advances improvement approaches with problems found during field commissioning test and its trouble-shooting proc...This paper introduces an applicable test plan for emergency diesel generator in nuclear power plant. It advances improvement approaches with problems found during field commissioning test and its trouble-shooting processes. The method is based on the integration of complementary through, the extension theory of matter-element model and neural network theory combine to overcome a neural network to learn shelters, and other defects. The purpose of this paper is to provide the better running and commissioning experience for the similar emergency generator unit.展开更多
Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid ...Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.展开更多
文摘A persistent challenge for Oman's energy infrastructure was the deafening rumble of diesel generators. The Silent Generator Project addressed this challenge, developing advanced generators that deliver power quietly and efficiently. Diesel generators have historically been notorious for being noisy and vibrational, making them unsuitable for sensitive environments. To dramatically reduce noise levels, the project utilized innovative materials and design modifications to ensure reliable and quiet electricity for various applications. In all directions, the project advanced the knowledge of noise reduction through rigorous testing and meticulous integration of insulators and mufflers. As a result, quieter, more sustainable energy production is on the way, marking a major advance in silent generator technology. Furthermore, the Silent Generator Project lays the foundation for more efficient and environmentally friendly diesel generator technologies in the future. As a result of this research, a new standard for quieter, greener energy generation is established, demonstrating the critical role noise reduction plays in energy generation. Additionally, this work also suggests future diesel generator technologies that are more efficient and environmentally friendly. As a result of this research, a new standard for quieter, greener energy generation is set, demonstrating the critical role noise reduction plays in energy generation.
文摘For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.
文摘This paper presents the modeling, simulation and practical implementation of an inverter-based diesel generator emulator. The main purpose of this emulator is for the study of frequency variations in diesel-based autonomous power systems in a laboratory environment where the operation of a real diesel generator is not possible. The emulator basically consists in a voltage source inverter with a second order output filter which voltage references are given by the model of the diesel generator. The control of the emulator is based on the digital signal processor TMS320F2812, where the mathematical models of the diesel generator and the control of the inverter are computed in real-time. Parameters for the model were obtained from commercially available components. Experimental results for different values of speed droop showed that the emulator achieves a satisfactory performance in the transient and stationary response. For the stationary response, the measured frequency deviates from theoretical values with a mean absolute error of: 0.06 Hz for 0% droop, 0.037 Hz for 3% droop, and 0.087 Hz for 5% droop. For the transient response, the measured frequency nadir deviates from simulations in: 0.05 Hz for 0% droop, 0.02 Hz for 3% droop, and 0.1 Hz for 5% droop.
文摘One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and rotational speed of the diesel engine will maintain the combustion efficiency near the levels of the nominal regime. Accordingly, the generator itself should operate at a variable speed which normally requires power electronics converters. In this paper, we are exploring a new generator concept that uses a stator rotating in opposite direction to the rotor such as the relative velocity between the two components remains constant when diesel engine slows down. The stator itself is driven by a compensator synchronous motor (CM) such as the relative velocity of the rotor is constant, eliminating as such sophisticated power electronics. The model developed for the synchronous machine with a rotating stator is based on Park’s transformation. This new concept was modelled using MATLAB software. Experimental analysis has been conducted using a 500-kW diesel GENSET equipped with a permanent magnet synchronous generator (PMSG). The numerical and experimental results are in good agreement and demonstrate that fuel consumption is reduced with a rotating-mode stator for PMSG during low electrical loads.
文摘This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel generators to reduce the electricity bills for customers is carried out by using the hybrid optimization model for electric renewable(HOMER)software. The size of the standby diesel generator and its operational duration are determined based on the lowest cost of electricity obtained from the evaluations. The economic assessments demonstrate that there is potential to reduce the electricity bills for commercial and industrial customers under the existing fuel price and tariffs. The commercial customers under the tariff C2 have the highest potential to save their electricity bills with the use of standby diesel generators for peak reduction. This study demonstrates the potential of the standby diesel generators in peak reduction.
文摘The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic condition and/or at low loads. In addition, extended operation of the diesel generator at partial load develops the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency of the equipment and increases its fuel consumption. On the other hand, recent regulatory changes have led to ever more stringent and evolving emission standards. Among these, the International Maritime Organization (IMO) and the Environmental Protection Agency (EPA) have implemented emission standards in order to reduce exhaust gas emitted by marine diesel engines. To phase lower emission engines as soon as possible, a Tier system was adopted. This paper presents a literature review of existing technologies available to optimize the energy performance of diesel engines and diesel generators in order to reduce the cost of electricity, to increase the diesel engine efficiency and to decrease their fuel consumption and greenhouse gases (GHG) emissions. The proposed optimization methodologies are based on the application of Pre-treatment, Internal treatment and Post-treatment technologies for diesel engines and on the application of mechanical and electrical technologies for diesel power generators (DPGs). The list of references given at the end of the paper should offer aids for students and researchers working in this field.
基金supported by the Science and Technology Research&Development Project of China Construction Second Engineering Bureau Ltd.(No.91110000100024296D180009)。
文摘To improve the living standards,economical efficiency and environmental protection of isolated islands,remote areas and other areas with weak electric power facilities construction,a multi-source independent microgrid system is studied,including diesel generators,photovoltaic power generation system,wind power generation system and energy storage unit.Meanwhile,in order to realize the voltage and frequency stability control of AC bus of multisource microgrid,the virtual synchronous generator technology is introduced into the energy storage unit,and the charge and discharge control of the energy storage battery are simulated as the control behavior characteristics of synchronous motors,so as to provide damping and inertia support for the microgrid.The operation mode and control principle of each energy subsystem are expounded and analyzed.The algorithm principle of virtual synchronous generator and the control method of energy storage unit are given.Then,the working modes of the microgrid system under different environmental conditions are analyzed,and the multi-source microgrid system simulation model is built based on MATLAB/Simulink.The simulation results show that the microgrid system can run stably under different working modes and the energy storage unit using the virtual synchronous generator technology can provide good voltage and frequency support for the microgrid system.Finally,experiments verify the supporting function of energy storage unit on the voltage and frequency of the microgrid system.
文摘This paper introduces an applicable test plan for emergency diesel generator in nuclear power plant. It advances improvement approaches with problems found during field commissioning test and its trouble-shooting processes. The method is based on the integration of complementary through, the extension theory of matter-element model and neural network theory combine to overcome a neural network to learn shelters, and other defects. The purpose of this paper is to provide the better running and commissioning experience for the similar emergency generator unit.
文摘Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.