Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess...Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.展开更多
In this study,Hypermesh and LS-DYNA numerical simulation software are used to build a multi domain coupling model of natural gas pipeline,including soil,pipeline,TNT explosive and air domain,and the non-reflection bou...In this study,Hypermesh and LS-DYNA numerical simulation software are used to build a multi domain coupling model of natural gas pipeline,including soil,pipeline,TNT explosive and air domain,and the non-reflection boundary conditions are set for the model.The TNT equivalent method is used to convert the physical explosion amount of natural gas pipeline into 1387.38 kg TNT explosive amount.The simulation results show that the physical explosion of pipeline forms an approximate elliptical crater with a width of 12.68 m and a depth of 4.12 m;the TNT equivalent of the model is corrected by comparing the crater simulation value and the size value of the crater calculated by the PRCI empirical formula under the same laying condition,and the correction coefficient is selected as O.9,and the cor-rected TNT equivalent is 1248.64 kg:the modified model crater size is 3.72 m deep and 12.66 m wide,compared with the crater size obtained from the field test,the error of crater depth and width calculated by the modified model simulation is 5.7%and 15.5%respectively.展开更多
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ...A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.展开更多
Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase...Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase by 0.5% and 2.7%, respectively, whereas the Curie temperature Tc increases from 519 to 633 K. With further increasing the nitrogenation pressure to 20 and 40 MPa, the 1:12 main phase starts to decompose and a large amount of Mo and a-Fe precipitates. This leads to variation of Mo concentration in the 1:12 phase and causes a sharp decrease in Tc and in the coercivity. The relative complex permittivity and permeability of paraffin-SmFeloMO2 composites show multi-resonant behavior. After nitrogenation, the magnetic loss of the powders decreases, which may originate from the influence of eddy currents due to the increase in the particle size.展开更多
文摘Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.
基金supported by the Central University Basic Research Project (FRF-IDRY-20-028,FRF-BD-19-019A)the National Key Research and Development Program of China (2016YFCO0801408)the National Natural Science Youth Foundation Project (51504017).
文摘In this study,Hypermesh and LS-DYNA numerical simulation software are used to build a multi domain coupling model of natural gas pipeline,including soil,pipeline,TNT explosive and air domain,and the non-reflection boundary conditions are set for the model.The TNT equivalent method is used to convert the physical explosion amount of natural gas pipeline into 1387.38 kg TNT explosive amount.The simulation results show that the physical explosion of pipeline forms an approximate elliptical crater with a width of 12.68 m and a depth of 4.12 m;the TNT equivalent of the model is corrected by comparing the crater simulation value and the size value of the crater calculated by the PRCI empirical formula under the same laying condition,and the correction coefficient is selected as O.9,and the cor-rected TNT equivalent is 1248.64 kg:the modified model crater size is 3.72 m deep and 12.66 m wide,compared with the crater size obtained from the field test,the error of crater depth and width calculated by the modified model simulation is 5.7%and 15.5%respectively.
文摘A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.
基金financially supported by the National Natural Science Foundation of China (No. 51261001)Liaoning Provincial Natural Science Foundation (No. 2013020105)Shenyang Science and Technology Foundation (No. F13-316-139)
文摘Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase by 0.5% and 2.7%, respectively, whereas the Curie temperature Tc increases from 519 to 633 K. With further increasing the nitrogenation pressure to 20 and 40 MPa, the 1:12 main phase starts to decompose and a large amount of Mo and a-Fe precipitates. This leads to variation of Mo concentration in the 1:12 phase and causes a sharp decrease in Tc and in the coercivity. The relative complex permittivity and permeability of paraffin-SmFeloMO2 composites show multi-resonant behavior. After nitrogenation, the magnetic loss of the powders decreases, which may originate from the influence of eddy currents due to the increase in the particle size.