Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi...Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.展开更多
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s...Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.展开更多
Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefi...Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed.展开更多
Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in ...Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal...Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.展开更多
Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to...Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.展开更多
The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and be...The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.展开更多
The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on...The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test.展开更多
A challenge in the restoration of historical buildings is strengthened in order to guarantee their durability and the evaluation of the correct identification of materials which need to be the results of consolidation...A challenge in the restoration of historical buildings is strengthened in order to guarantee their durability and the evaluation of the correct identification of materials which need to be the results of consolidation treatments which may be applied during their repair. Methods which make such a complex characterization possible are rare. This paper presents an investigation carried out at the University of Mons (Belgium) in collaboration with the technical support and control unit, restoration directorate, of the Walloon region, aiming to evaluate the effectiveness of consolidants used to strengthen stone masonry. The characterization of the materials is based on a novel semi-destructive scratching method which allows tomographic representation of the strength of the damaged and treated areas. This paper describes the experimental methodology and presents results from laboratory experiments as well as a case study.展开更多
基金financially supported by the Young Scientist Project of the National Key Research and Development Program of China (No.2021YFC2900600)the Beijing Nova Program (No.20220484057)financial support from China Scholarship Council under Grant CSC No.202110300001。
文摘Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
基金the financial support from the National Natural Science Foundation of China(No.51979191)the National Key Research and Development Program of China(Nos.2016YFC0802204,2016YFC0802201)+2 种基金the National Natural Science Fund for Innovative Research Groups Science Foundation(No.51321065)the Construction Science and Technology Project of the Ministry of Transport of the People’s Republic of China(No.2014328224040)the Science and Technology Plan Project of Tianjin Port(No.2020-165)。
文摘Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.
文摘Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed.
文摘Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
基金Project(51608281)supported by the National Natural Science Foundation of ChinaProject(LGG21E080005)supported by the Provincial Natural Science Foundation of Zhejiang Province,China。
文摘Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.
基金This paper is supported by the National "863" Program in the Tenth Five-Year-Plan (No. 2002AA615020)Eleventh Five-Year-Plan (No. 2006AA09A201)the Focused Subject Program of Beijing (No. XK104910598).
文摘Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.
基金the University of Regina for providing laboratory space and the Natural Science and Engineering Research Council of Canada for financial assistance
文摘The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.
文摘The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test.
文摘A challenge in the restoration of historical buildings is strengthened in order to guarantee their durability and the evaluation of the correct identification of materials which need to be the results of consolidation treatments which may be applied during their repair. Methods which make such a complex characterization possible are rare. This paper presents an investigation carried out at the University of Mons (Belgium) in collaboration with the technical support and control unit, restoration directorate, of the Walloon region, aiming to evaluate the effectiveness of consolidants used to strengthen stone masonry. The characterization of the materials is based on a novel semi-destructive scratching method which allows tomographic representation of the strength of the damaged and treated areas. This paper describes the experimental methodology and presents results from laboratory experiments as well as a case study.