Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size...Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).展开更多
We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,ma...We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.展开更多
Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrath...Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.展开更多
CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-...CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.展开更多
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the p...The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.展开更多
We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The en...We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.展开更多
Permeability characteristics of sputtered soft magnetic Fe40Co40B20 thin films are investigated in the range of O. 5 to 5 GHz by a shortened microstrip transmission line perturbation method. Excellent microwave permea...Permeability characteristics of sputtered soft magnetic Fe40Co40B20 thin films are investigated in the range of O. 5 to 5 GHz by a shortened microstrip transmission line perturbation method. Excellent microwave permeability is achieved at 0.4 Pa argon pressure: fr is 3.32 GHz, the real and imaginary part of permeability at 0.5 GHz are 104 and 61, respectively. In addition, the thickness effect on permeability is also studied. The minimum damping can be achieved at the thinnest film. Different sources contributed to in-plane anisotropy are discussed briefly. The deviation between the peak frequency of the imaginary part and the zero-crossing frequency of the real part of permeability is also presented.展开更多
To increase the low-field magnetostriction of TbFe films, the influences of sputtering angles and annealing temperatures on its magnetic and magnetostrictive performances were systematically investigated. With the cha...To increase the low-field magnetostriction of TbFe films, the influences of sputtering angles and annealing temperatures on its magnetic and magnetostrictive performances were systematically investigated. With the change in sputtering angles from 90° to 15°, the in-plane magnetization of TbFe films, at 1600 kA·m-1 external field, is strongly increased. An enhancement in the in-plane magnetostrictive coefficient of the films at 40 kA·m-1 is also observed. A detection of magnetic domains by MFM (magnetic force microscopy) indicates that the easy magnetization direction shifts gradually from perpendicular to parallel to the film plane with decreasing sputtering angles. Annealing can enhance the magnetization and magnetostriction of the TbFe films. However, at too high annealing temperature, both the magnetization and magnetostriction of the TbFe films were suppressed to some extent.展开更多
Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multila...Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multilayer films were investigated as a function of Ag layer thickness. It was found that the face-centered tetragonal (fct) (001) texture of CoPt was improved greatly by introducing the Ag toplayer or sublayer together with an Ag underlayer. Good (001)-oriented growth, low intergrain interactions as well as high perpendicular anisotropy can be obtained in the Ag(3 nm)/[BN(2.5 nm)/CoPt(3 nm)]5/Ag(7 nm) and [BN(2.5 nm)/Ag(2 nm)/CoPt(3 nm)]5/Ag(10 nm) films, which become potential candidates for ultrahigh density magnetic recording media.展开更多
NiFeCr/NiFe/Ta films with excellent performance were prepared by magnetron sputtering system.The anisotropic magetoresistance (AMR) value (ΔR/R) and magnetic filed sensitivity (Sv,Sv=[d(ΔR/R)/dH]max.) for the 12 nm ...NiFeCr/NiFe/Ta films with excellent performance were prepared by magnetron sputtering system.The anisotropic magetoresistance (AMR) value (ΔR/R) and magnetic filed sensitivity (Sv,Sv=[d(ΔR/R)/dH]max.) for the 12 nm NiFe film deposited on NiFeCr buffer layer were 3.66% and 1.42×10-4%·T-1,respectively.The higher Sv of the film is close to that of a spin valve (SV).The microstructure analysis shows that the NiFeCr buffer layer has adopted the same structure with the same interplanar distance as the NiFe layer,inducing a strong NiFe (111) texture,and that the NiFeCr/NiFe interface is quite smooth,leading to a high degree of specular reflection of conduction electrons.Both increase the ΔR and reduce the R in the film,which lead to the high ΔR/R.Clean substrate surfaces are critical for preparation of high performance NiFeCr/NiFe/Ta films,and sputter cleaning or pre-deposition of 5 nm amorphous Al2O3 layer in the deposition chamber can provide the re-quired clean substrate surfaces for the growth of the buffer layer.展开更多
The thickness of CoP thin films prepared by wet chemical deposition is of crucial importance on magnetic property and recording perform-ance. The coercivity of CoP films decreased with increasing film thickness. The c...The thickness of CoP thin films prepared by wet chemical deposition is of crucial importance on magnetic property and recording perform-ance. The coercivity of CoP films decreased with increasing film thickness. The coercivity was 45.37 kA m 1 at the thickness of 300 nm, and decreased to 21.65 kA m 1 at 5.7 μm. Recording performance tests indicate that, for drums with the same size, different recorded magnetic pole density have different thickness requirements. For 40 mm diameter magnetic drum, the optimal CoP thickness is 3~10 μm for 256 re-corded magnetic poles, 1~2 μm for 512 recorded magnetic poles, and 500~800 nm for 1024 recorded magnetic poles.展开更多
A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and ...A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.展开更多
Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduct...Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.展开更多
Dense, adhesive and uniform Sm-Co alloy films were prepared by potentiostatic electrolysis on copper substrates in urea-acetamide-NaBr-KBr melt at 353 K, which were observed by SEM. The electroreduction of Co2+ and Sm...Dense, adhesive and uniform Sm-Co alloy films were prepared by potentiostatic electrolysis on copper substrates in urea-acetamide-NaBr-KBr melt at 353 K, which were observed by SEM. The electroreduction of Co2+ and Sm3+ was investigated by cyclic voltammetry. The reduction of Co2+ is an irreversible process. Sm3+ can not be reduced alone, but Sm-Co can be co-deposited by induced deposition. The films could be crystallized by heat-treatment at different temperature from 723 to 923 K under Ar atmosphere. The annealed time was chosen as 30 s. The phases of deposited and annealed films were investigated by XRD. The content of Sm was analyzed by Inductive Coupled Plasma Emission Spectrometer (ICPES). The hysteresis loops of the Sm-Co alloy films have been measured by Vibrating Sample Magnetometer (VSM). The experimental results reveal that, the heat-treatment has important influence on coercive field Hc and remanent squareness S of Sm-Co alloy films; the deposited Sm-Co alloy films are amorphous, while the annealed those become polycrystalline; in addition, the magnetocrystalline anisotropy and preferring orientation of films depend strongly on the contents of crystal phases.展开更多
SmFe thin films were prepared by DC magietron sputtering at room temperature and 300 %. The influence of magnetic annealing temperature on the phase structure and magnetic properties was investigated. Results showed t...SmFe thin films were prepared by DC magietron sputtering at room temperature and 300 %. The influence of magnetic annealing temperature on the phase structure and magnetic properties was investigated. Results showed that thermal sputtering followed by a heat treatment process helped to obtain a structure with a relatively large fraction of SmFe2. Residual phases observed were α-Fe, Sm2O3, and unknown phases. During the annealing treatment, the intrinsic compressive stress in SmFe films was relieved and could become tensile at higher annealing temperatures. The degree of in-plane anisotropy weakened, and furthermore, the anisotropy transformed into out-of-plane anisotropy.展开更多
Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited s...Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.展开更多
NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresp...NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresponding to any other phases between 75 ℃ and 85 ℃. As the pH value of oxidizing solution increases to 8.3, the saturation magnetization increases to 3.13 × 10^5 A/m and resistivity to 127 m Ω ·cm. Film deposited at pH 7.8 has a smooth surface and definite columnar structure. The large wavy flakes were observed at pH 8.3. The high real part of complex permeability μ′ up to 36.1 and the imaginary part μ″ up to 53.2 were observed at 0.5 GHz by short microstrip line perturbation method. The μ″ of thin film has values higher than 20 at the frequencies between 0.5 GHz and 2 GHz, the film is a promising anti-noise material for high frequency applications,展开更多
FeNi multilayer films were prepared by EB-PVD technique. A modified TG-DSC apparatus was used to measure their Curie temperatures, which were around 7600C, lower than that of pure Fe thin films. The easy magnetization...FeNi multilayer films were prepared by EB-PVD technique. A modified TG-DSC apparatus was used to measure their Curie temperatures, which were around 7600C, lower than that of pure Fe thin films. The easy magnetization axis was in-plane. High temperature annealing in vacuum decreased the coercivity sharply. The saturation magnetization also changed with heat treatment. After annealing at the temperature equal to the substrate temperature during deposition, the saturation magnetization decreased.展开更多
The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested ...The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12241403)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).
基金the Research Program of Shenyang Institute of Science and Technology(Grant No.ZD-2024-05).
文摘We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.
基金supported by the Natural Science Foundation of Guangdong Province of China(2023A1515010882)the Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong Province of China(KFKT2022B06)+2 种基金the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2015-T2-1-016,MOE2018-T2-1-019,and MoE T1 R-284-000-196-114)the Singapore National Research Foundation(NRF-CRP10-2012-02)supported from SSLS via National University of Singapore Core Support(C-380-003-003-001).
文摘Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film,and it is important to determine its effect on magnetic interactions to understand interfacial coupling.In this work,ultrathin Pr_(0.67)Sr_(0.33)MnO_(3)(PSMO)films on different substrates are studied.For PSMO film under different in-plane strain conditions,the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion.However,the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient.Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process.A non-monotonous structural transition of the MnO_(6) octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO_(3) substrate.This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film,which should be applicable to other complex oxide systems.
基金Projects(50771092,21073162) supported by the National Natural Science Foundation of ChinaProject(2005DKA10400-Z15) supported by the Ministry of Science and Technology of China
文摘CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.
基金This work is supported by nology Cooperation Plan of LKS[2013]15), the 2012 Doctor Normal University of China the Science and Tech- Guizhou Province (J- Foundation of Guizhou (Xun Zhou) Scholars of Ministry of Education of China, Ph.D. Programs Foundation of Ministry of Education of China (No.20120171120011), the Open Fund of the State Key Laboratory on Integrated Optoelectronics of Jilin University (No.IOKL2013KF14), the National Natural Science Foundation of China (No.61273310).
文摘The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.
基金This work was supported by the National Natural Science Foundation of China (No.60776039 and No.60406005), the Natural Science Foundation of Beijing (No.3062016), and the School Foundation of Beijing Jiaotong University.
文摘We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.
基金supported by the National Natural Science Foundation of China(Grant No:10274018)the Foundation of Hebei Provincial Education Department(Grant No:002013)the Key Foundation of Hebei Normal University(Grant No:120203).
文摘Permeability characteristics of sputtered soft magnetic Fe40Co40B20 thin films are investigated in the range of O. 5 to 5 GHz by a shortened microstrip transmission line perturbation method. Excellent microwave permeability is achieved at 0.4 Pa argon pressure: fr is 3.32 GHz, the real and imaginary part of permeability at 0.5 GHz are 104 and 61, respectively. In addition, the thickness effect on permeability is also studied. The minimum damping can be achieved at the thinnest film. Different sources contributed to in-plane anisotropy are discussed briefly. The deviation between the peak frequency of the imaginary part and the zero-crossing frequency of the real part of permeability is also presented.
基金We are grateful to the National Natural Science Foundation of China(Grant No.50271014)for the financial support of this work.
文摘To increase the low-field magnetostriction of TbFe films, the influences of sputtering angles and annealing temperatures on its magnetic and magnetostrictive performances were systematically investigated. With the change in sputtering angles from 90° to 15°, the in-plane magnetization of TbFe films, at 1600 kA·m-1 external field, is strongly increased. An enhancement in the in-plane magnetostrictive coefficient of the films at 40 kA·m-1 is also observed. A detection of magnetic domains by MFM (magnetic force microscopy) indicates that the easy magnetization direction shifts gradually from perpendicular to parallel to the film plane with decreasing sputtering angles. Annealing can enhance the magnetization and magnetostriction of the TbFe films. However, at too high annealing temperature, both the magnetization and magnetostriction of the TbFe films were suppressed to some extent.
基金supported by the National Natural Science Foundation of China (No.10574085)the Scientific Research of Yuncheng University,China (No.2009007)
文摘Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vac- uum at 600 ℃ for 30 min. The structures and magnetic properties of CoPt/BN multilayer films were investigated as a function of Ag layer thickness. It was found that the face-centered tetragonal (fct) (001) texture of CoPt was improved greatly by introducing the Ag toplayer or sublayer together with an Ag underlayer. Good (001)-oriented growth, low intergrain interactions as well as high perpendicular anisotropy can be obtained in the Ag(3 nm)/[BN(2.5 nm)/CoPt(3 nm)]5/Ag(7 nm) and [BN(2.5 nm)/Ag(2 nm)/CoPt(3 nm)]5/Ag(10 nm) films, which become potential candidates for ultrahigh density magnetic recording media.
基金supported by the National Science Foundation of China (No.50671008,50871014,50831002,50971021,and 50101012)
文摘NiFeCr/NiFe/Ta films with excellent performance were prepared by magnetron sputtering system.The anisotropic magetoresistance (AMR) value (ΔR/R) and magnetic filed sensitivity (Sv,Sv=[d(ΔR/R)/dH]max.) for the 12 nm NiFe film deposited on NiFeCr buffer layer were 3.66% and 1.42×10-4%·T-1,respectively.The higher Sv of the film is close to that of a spin valve (SV).The microstructure analysis shows that the NiFeCr buffer layer has adopted the same structure with the same interplanar distance as the NiFe layer,inducing a strong NiFe (111) texture,and that the NiFeCr/NiFe interface is quite smooth,leading to a high degree of specular reflection of conduction electrons.Both increase the ΔR and reduce the R in the film,which lead to the high ΔR/R.Clean substrate surfaces are critical for preparation of high performance NiFeCr/NiFe/Ta films,and sputter cleaning or pre-deposition of 5 nm amorphous Al2O3 layer in the deposition chamber can provide the re-quired clean substrate surfaces for the growth of the buffer layer.
基金supported by the National Natural Science Foundation of China (No. 51101013)Specialized Research Fund for the Doctoral Program of Higher Education of China(No. 20090006120013)the Fundamental Research Funds for the Central Universities (FRF-TP-12-038A)
文摘The thickness of CoP thin films prepared by wet chemical deposition is of crucial importance on magnetic property and recording perform-ance. The coercivity of CoP films decreased with increasing film thickness. The coercivity was 45.37 kA m 1 at the thickness of 300 nm, and decreased to 21.65 kA m 1 at 5.7 μm. Recording performance tests indicate that, for drums with the same size, different recorded magnetic pole density have different thickness requirements. For 40 mm diameter magnetic drum, the optimal CoP thickness is 3~10 μm for 256 re-corded magnetic poles, 1~2 μm for 512 recorded magnetic poles, and 500~800 nm for 1024 recorded magnetic poles.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2012205038)
文摘A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.
基金financially supported by the Science Foundation of the Educational Department of Fujian Prov-ince (No. 2008F5021)the Natural Science Foundation of Fujian Province (No. A0510013)the National Natural Science Foundation of China (No. 60676055)
文摘Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.
基金the National Key Project for Basic Research of China (20005CB623605)NSF of Fujian Province(A0510013)
文摘Dense, adhesive and uniform Sm-Co alloy films were prepared by potentiostatic electrolysis on copper substrates in urea-acetamide-NaBr-KBr melt at 353 K, which were observed by SEM. The electroreduction of Co2+ and Sm3+ was investigated by cyclic voltammetry. The reduction of Co2+ is an irreversible process. Sm3+ can not be reduced alone, but Sm-Co can be co-deposited by induced deposition. The films could be crystallized by heat-treatment at different temperature from 723 to 923 K under Ar atmosphere. The annealed time was chosen as 30 s. The phases of deposited and annealed films were investigated by XRD. The content of Sm was analyzed by Inductive Coupled Plasma Emission Spectrometer (ICPES). The hysteresis loops of the Sm-Co alloy films have been measured by Vibrating Sample Magnetometer (VSM). The experimental results reveal that, the heat-treatment has important influence on coercive field Hc and remanent squareness S of Sm-Co alloy films; the deposited Sm-Co alloy films are amorphous, while the annealed those become polycrystalline; in addition, the magnetocrystalline anisotropy and preferring orientation of films depend strongly on the contents of crystal phases.
基金Project supported by the National Natural Science Foundation of China (50271017)
文摘SmFe thin films were prepared by DC magietron sputtering at room temperature and 300 %. The influence of magnetic annealing temperature on the phase structure and magnetic properties was investigated. Results showed that thermal sputtering followed by a heat treatment process helped to obtain a structure with a relatively large fraction of SmFe2. Residual phases observed were α-Fe, Sm2O3, and unknown phases. During the annealing treatment, the intrinsic compressive stress in SmFe films was relieved and could become tensile at higher annealing temperatures. The degree of in-plane anisotropy weakened, and furthermore, the anisotropy transformed into out-of-plane anisotropy.
基金Item Sponsored by National Natural Science Foundation of China(20571067)
文摘Effect of bath composition ([Co^2+]/[-Pt^Ⅳ ] and [-WO4^2- ], [cit^-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [-Co^2+ ] to [-Pt^Ⅳ ] was 10 ; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO4^2- ] was lower than 0. 1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO4^2-] was over 0. 1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co^2+] and [Pt^Ⅳ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co- Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8. 5 and the concentration of citrate 0. 26 mol/L.
基金the Advanced Research Project of the General Armament De-partment of China
文摘NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresponding to any other phases between 75 ℃ and 85 ℃. As the pH value of oxidizing solution increases to 8.3, the saturation magnetization increases to 3.13 × 10^5 A/m and resistivity to 127 m Ω ·cm. Film deposited at pH 7.8 has a smooth surface and definite columnar structure. The large wavy flakes were observed at pH 8.3. The high real part of complex permeability μ′ up to 36.1 and the imaginary part μ″ up to 53.2 were observed at 0.5 GHz by short microstrip line perturbation method. The μ″ of thin film has values higher than 20 at the frequencies between 0.5 GHz and 2 GHz, the film is a promising anti-noise material for high frequency applications,
基金This work is supported by the National Natural Science Foundation of China (GrantNo. 69971006).
文摘FeNi multilayer films were prepared by EB-PVD technique. A modified TG-DSC apparatus was used to measure their Curie temperatures, which were around 7600C, lower than that of pure Fe thin films. The easy magnetization axis was in-plane. High temperature annealing in vacuum decreased the coercivity sharply. The saturation magnetization also changed with heat treatment. After annealing at the temperature equal to the substrate temperature during deposition, the saturation magnetization decreased.
文摘The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.