We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to ...Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to the bedding plane,the pores and fractures of high-rank coal samples collected from the southern Qinshui Basin were measured by low-field nuclear magnetic resonance,X-ray-computed tomography and field emission scanning electron microscopy.Then,the determinants of their connectivity were further discussed.The results show that the high-rank coal samples have similar pore size distributions both parallel and perpendicular to the bedding plane.They primarily contain mesopores(2-50 nm in width),followed by macrospores(> 50 nm in width).The research indicated that the high-rank coal connectivity parallel to the bedding plane is significantly better than that perpendicular to the bedding plane.The connectivity of high-rank coal is mainly determined by throats,and the orientation of the pores and fractures.The two connectivity modes in high-rank coal are "pore connectivity," in which the throats are mainly pores with a low coordination number,and "microfissure connectivity",in which the throats are mainly microfissures with a high coordination number.展开更多
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of D...A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.展开更多
EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful libera...EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful liberation of Tibet in 1951,she moved out of an aristocrat family in order to word in the public interest.展开更多
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
基金supported by the Fundamental Research Funds for the Central Universities (No.2017XKQY017)。
文摘Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to the bedding plane,the pores and fractures of high-rank coal samples collected from the southern Qinshui Basin were measured by low-field nuclear magnetic resonance,X-ray-computed tomography and field emission scanning electron microscopy.Then,the determinants of their connectivity were further discussed.The results show that the high-rank coal samples have similar pore size distributions both parallel and perpendicular to the bedding plane.They primarily contain mesopores(2-50 nm in width),followed by macrospores(> 50 nm in width).The research indicated that the high-rank coal connectivity parallel to the bedding plane is significantly better than that perpendicular to the bedding plane.The connectivity of high-rank coal is mainly determined by throats,and the orientation of the pores and fractures.The two connectivity modes in high-rank coal are "pore connectivity," in which the throats are mainly pores with a low coordination number,and "microfissure connectivity",in which the throats are mainly microfissures with a high coordination number.
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
基金Supported by the China National Science and Technology Major Project(2017ZX05064)
文摘A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.
文摘EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful liberation of Tibet in 1951,she moved out of an aristocrat family in order to word in the public interest.