Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-tur...Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.展开更多
The widely used Shack-Hartmann wavefront sensor(SHWFS)is a wavefront measurement system.Its measurement accuracy is limited by the reference wavefront used for calibration and also by various residual errors of the se...The widely used Shack-Hartmann wavefront sensor(SHWFS)is a wavefront measurement system.Its measurement accuracy is limited by the reference wavefront used for calibration and also by various residual errors of the sensor itself.In this study,based on the principle of spherical wavefront calibration,a pinhole with a diameter of 1μm was used to generate spherical wavefronts with extremely small wavefront errors,with residual aberrations of 1.0×10^(−4)λRMS,providing a high-accuracy reference wavefront.In the first step of SHWFS calibration,we demonstrated a modified method to solve for three important parameters(f,the focal length of the microlens array(MLA),p,the sub-aperture size of the MLA,and s,the pixel size of the photodetector)to scale the measured SHWFS results.With only three iterations in the calculation,these parameters can be determined as exact values,with convergence to an acceptable accuracy.For a simple SHWFS with an MLA of 128×128 sub-apertures in a square configuration and a focal length of 2.8 mm,a measurement accuracy of 5.0×10^(−3)λRMS was achieved across the full pupil diameter of 13.8 mm with the proposed spherical wavefront calibration.The accuracy was dependent on the residual errors induced in manufacturing and assembly of the SHWFS.After removing these residual errors in the measured wavefront results,the accuracy of the SHWFS increased to 1.0×10^(−3)λRMS,with measured wavefronts in the range ofλ/4.Mid-term stability of wavefront measurements was confirmed,with residual deviations of 8.04×10^(−5)λPV and 7.94×10^(−5)λRMS.This study demonstrates that the modified calibration method for a high-accuracy spherical wavefront generated from a micrometer-scale pinhole can effectively improve the accuracy of an SHWFS.Further accuracy improvement was verified with correction of residual errors,making the method suitable for challenging wavefront measurements such as in lithography lenses,astronomical telescope systems,and adaptive optics.展开更多
The design of dry-running friction pairings and systems determines not only their installation space and costs,but also their reliability under critical load conditions,for example in emergencies,in the case of faults...The design of dry-running friction pairings and systems determines not only their installation space and costs,but also their reliability under critical load conditions,for example in emergencies,in the case of faults,and in the event of misuse.While knowledge of the contact pattern is highly important for the development of clutches and brakes,the contact-related measurement of the temperature of these systems has not yet been solved in a satisfactory manner.Despite its importance,the temperature distribution has only been measured in a few studies.Typically,temperature measurements of complete clutches and brakes are carried out using thermocouples only.In this study,a new innovative test setup is presented.This setup is able to measure the heat distribution of the lining and the steel disk of a brake with high spatial resolution by means of fiber optic sensing technology and thermography.As a novelty,it enables measurement of the heat distribution and allows to correlate it with the fade and recovery behavior.Contrary to the expectations,the contact pattern is heterogeneous in circumferential direction.Possible causes are discussed using simulation results.Along with surface analysis,the new setup contributes to the investigation of the causes of fade and recovery.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金The National Key Research and Development Program of China under contract No.2019YFE0120900the Natural Science Foundation of Zhejiang Province under contract No.Y19D060024+1 种基金the National Natural Science Foundation of China under contract Nos U1709202 and 41806228the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(LORCE).
文摘Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.
基金supported by the National Key Research and Development Program of China(2021YFF0700700)the National Natural Science Foundation of China(62075235)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019320)Entrepreneurship and Innovation Talents in Jiangsu Province(Innovation of Scientific Research Institutes)the Jiangsu Provincial Key Research and Development Program(BE2019682).
文摘The widely used Shack-Hartmann wavefront sensor(SHWFS)is a wavefront measurement system.Its measurement accuracy is limited by the reference wavefront used for calibration and also by various residual errors of the sensor itself.In this study,based on the principle of spherical wavefront calibration,a pinhole with a diameter of 1μm was used to generate spherical wavefronts with extremely small wavefront errors,with residual aberrations of 1.0×10^(−4)λRMS,providing a high-accuracy reference wavefront.In the first step of SHWFS calibration,we demonstrated a modified method to solve for three important parameters(f,the focal length of the microlens array(MLA),p,the sub-aperture size of the MLA,and s,the pixel size of the photodetector)to scale the measured SHWFS results.With only three iterations in the calculation,these parameters can be determined as exact values,with convergence to an acceptable accuracy.For a simple SHWFS with an MLA of 128×128 sub-apertures in a square configuration and a focal length of 2.8 mm,a measurement accuracy of 5.0×10^(−3)λRMS was achieved across the full pupil diameter of 13.8 mm with the proposed spherical wavefront calibration.The accuracy was dependent on the residual errors induced in manufacturing and assembly of the SHWFS.After removing these residual errors in the measured wavefront results,the accuracy of the SHWFS increased to 1.0×10^(−3)λRMS,with measured wavefronts in the range ofλ/4.Mid-term stability of wavefront measurements was confirmed,with residual deviations of 8.04×10^(−5)λPV and 7.94×10^(−5)λRMS.This study demonstrates that the modified calibration method for a high-accuracy spherical wavefront generated from a micrometer-scale pinhole can effectively improve the accuracy of an SHWFS.Further accuracy improvement was verified with correction of residual errors,making the method suitable for challenging wavefront measurements such as in lithography lenses,astronomical telescope systems,and adaptive optics.
基金The project 19377-N of the Research Association for Drive Technology is funded as part of the program for the promotion of industrial community research by the Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag.
文摘The design of dry-running friction pairings and systems determines not only their installation space and costs,but also their reliability under critical load conditions,for example in emergencies,in the case of faults,and in the event of misuse.While knowledge of the contact pattern is highly important for the development of clutches and brakes,the contact-related measurement of the temperature of these systems has not yet been solved in a satisfactory manner.Despite its importance,the temperature distribution has only been measured in a few studies.Typically,temperature measurements of complete clutches and brakes are carried out using thermocouples only.In this study,a new innovative test setup is presented.This setup is able to measure the heat distribution of the lining and the steel disk of a brake with high spatial resolution by means of fiber optic sensing technology and thermography.As a novelty,it enables measurement of the heat distribution and allows to correlate it with the fade and recovery behavior.Contrary to the expectations,the contact pattern is heterogeneous in circumferential direction.Possible causes are discussed using simulation results.Along with surface analysis,the new setup contributes to the investigation of the causes of fade and recovery.