Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern...Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.展开更多
Researchers in the remote sensing field use different types of images from satellite systems and simulator devices, such as goniometers. However, no device can simulate the new generation of optical satellite system c...Researchers in the remote sensing field use different types of images from satellite systems and simulator devices, such as goniometers. However, no device can simulate the new generation of optical satellite system called near-equatorial satellite system to perform different kinds of remote sensing applications in equatorial regions. This study proposed a newly invented laboratory and fieldwork goniometer designed to simulate and capture intensity variation and measure the bidirectional spectral reflectance of earth surface. The proposed goniometer is a multi-purpose and multi-field device. It is able to simulate different satellite systems and measure the intensity variation and spectral reflectance of earth’s surface features with freely azimuth and zenith angles of sensors and illumination source in fieldwork and/or laboratory. However, the system of invention is focusing on specific satellite orbital to work with the parameters and properties of NEqO satellite system in order to obtain NEqO system imagery for performing different applications such as geometric correction, relative radiometric normalization and change detection for future work. The significant of this invention is that most of the invented goniometers of remote sensing are able to work just in field or just in laboratory and use, carry just optical sensor or hyperspectral sensor. Specifically, our invention can do all these functions that are not available in existing goniometers. The proposed device offers several advantages, namely, high measurement speed, flexibility, low cost, efficiency, and possible measurement depending on the free zenith/azimuth angles of sensors and illumination sources. The proposed goniometer includes ten parts, and two different sensors (optical and hyperspectral).展开更多
The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects...The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized.展开更多
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f...Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images.展开更多
Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and d...Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and datasets over the past two decades.In this study,we conducted a holistic review of the major advances and challenges in quantifying PM,with a specific focus on instruments,algorithms,datasets,and modeling methods that have been developed over the past 20 years.The aim of this study is to provide a general guide for future satellite-based PM concentration mapping practices and to better support air quality monitoring and management of environmental health.Specifically,we review the evolution of satellite platforms,sensors,inversion algorithms,and datasets that can be used for monitoring aerosol properties.We then compare various practical methods and techniques that have been used to estimate PM mass concentrations and group them into four primary categories:(1)univariate regression,(2)chemical transport models(CTM),(3)multivariate regression,and(4)empirical physical approaches.Considering the main challenges encountered in PM mapping practices,for example,data gaps and discontinuity,a hybrid method is proposed with the aim of generating PM concentration maps that are both spatially continuous and have high precision.展开更多
We propose a new method to estimate surface-level particulate matter(PM)concentrations by using satellite-retrieved Aerosol Optical Thickness(AOT).This method considers the distribution and variation of Planetary Boun...We propose a new method to estimate surface-level particulate matter(PM)concentrations by using satellite-retrieved Aerosol Optical Thickness(AOT).This method considers the distribution and variation of Planetary Boundary Layer(PBL)height and relative humidity(RH)at the regional scale.The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT.By incorporation MODIS AOT,PBL height and RH simulated by RAMS,this method is applied to estimate the surface-level PM 2.5 concentrations in North China region.The result is evaluated by using 16 ground-based observations deployed in the research region,and the result shows a good agreement between estimated PM 2.5 concentrations and observations,and the coefficient of determination R2 is 0.61 between the estimated PM 2.5 concentrations and the observations.In addition,surface-level PM 2.5 concentrations are also estimated by using MODIS AOT,ground-based LIDAR observations and RH measurements.A comparison between the two estimated PM 2.5 concentrations shows that the new method proposed in this paper is better than the traditional method.The coefficient of determination R2 is improved from 0.32 to 0.62.展开更多
As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the m...As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the main HRSS are summarized,and these technologies include sensor design,attitude and orbit determination,geometric calibration,imaging model construction,and block adjustment,etc.,which involve the mapping accuracy of HRSS.Finally,the system design of the ZY-3 Satellite(China’s first civil stereoscopic surveying and mapping satellite,to be launched in 2012)is introduced,which mainly include satellite technical specifications and strategies design based on these key technologies research.展开更多
This paper focuses upon the novel optical conical scanning imaging working mode design for small satellites.This kind of satellite employs only one inclined optical camera achieving wide-swath imaging via a rotational...This paper focuses upon the novel optical conical scanning imaging working mode design for small satellites.This kind of satellite employs only one inclined optical camera achieving wide-swath imaging via a rotational motion about the nadir axis either by the camera or by the satellite.Three working modes are designed,i.e.,high-speed rotational mode,low-speed rotational mode,and variable-speed rotational mode.For the high-speed and low-speed working modes,the camera rotates at a constant speed and the corresponding angular velocity is derived under the consideration of guaranteed coverage and minimized overlap.To improve the system performance,an enhanced working mode taking advantages of both the high-speed rotational mode and lowspeed rotational mode is proposed.Working in this variable-speed rotational mode,the camera rotates slowly to get high-quality pictures when it works,while it rotates rapidly to reduce the energy consumption and save the storage during which period the camera is turned off to minimize the overlap.All these working modes are illustrated in detail,and numerical simulation tests are conducted to validate their effectiveness.展开更多
基金This work is supported by the National Natural Science Foundation of China[grant numbers 91738302 and 91838303]the National Science Fund for Distinguished Young Scholars[grant number 61825103]Thanks for the support of China Centre for Resources Satellite Data and Application(CRESDA).
文摘Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.
文摘Researchers in the remote sensing field use different types of images from satellite systems and simulator devices, such as goniometers. However, no device can simulate the new generation of optical satellite system called near-equatorial satellite system to perform different kinds of remote sensing applications in equatorial regions. This study proposed a newly invented laboratory and fieldwork goniometer designed to simulate and capture intensity variation and measure the bidirectional spectral reflectance of earth surface. The proposed goniometer is a multi-purpose and multi-field device. It is able to simulate different satellite systems and measure the intensity variation and spectral reflectance of earth’s surface features with freely azimuth and zenith angles of sensors and illumination source in fieldwork and/or laboratory. However, the system of invention is focusing on specific satellite orbital to work with the parameters and properties of NEqO satellite system in order to obtain NEqO system imagery for performing different applications such as geometric correction, relative radiometric normalization and change detection for future work. The significant of this invention is that most of the invented goniometers of remote sensing are able to work just in field or just in laboratory and use, carry just optical sensor or hyperspectral sensor. Specifically, our invention can do all these functions that are not available in existing goniometers. The proposed device offers several advantages, namely, high measurement speed, flexibility, low cost, efficiency, and possible measurement depending on the free zenith/azimuth angles of sensors and illumination sources. The proposed goniometer includes ten parts, and two different sensors (optical and hyperspectral).
基金supported by the Global Change Key Research Project (Grant No. 2010CB951302)the Social Common Wealth Research Project (Grant No. GYHY201106027)+1 种基金the National Natural Science Foundation of China (Grant No. 40771147)the National Key Technology R&D Program of China (Grant No. 2006BAD04B04)
文摘The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized.
文摘Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images.
基金This study was supported by the National Outstanding Youth Foundation of China(41925019)the National Key R&D Program of China(2016YFE0201400)+1 种基金the National Natural Science Foundation of China(41701413,41671367)We also acknowledge the support of the Labex CaPPA project,which is funded by the French National Research Agency under contract"ANR-11-LABX-0005-01".
文摘Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and datasets over the past two decades.In this study,we conducted a holistic review of the major advances and challenges in quantifying PM,with a specific focus on instruments,algorithms,datasets,and modeling methods that have been developed over the past 20 years.The aim of this study is to provide a general guide for future satellite-based PM concentration mapping practices and to better support air quality monitoring and management of environmental health.Specifically,we review the evolution of satellite platforms,sensors,inversion algorithms,and datasets that can be used for monitoring aerosol properties.We then compare various practical methods and techniques that have been used to estimate PM mass concentrations and group them into four primary categories:(1)univariate regression,(2)chemical transport models(CTM),(3)multivariate regression,and(4)empirical physical approaches.Considering the main challenges encountered in PM mapping practices,for example,data gaps and discontinuity,a hybrid method is proposed with the aim of generating PM concentration maps that are both spatially continuous and have high precision.
基金supported by National Department Public Benefit Research Foundation (Ministry of Environmental Protection of the People’s Republic of China) (Grant No. 201009001)National Natural Science Foundation of China (Grant No. 41101327)
文摘We propose a new method to estimate surface-level particulate matter(PM)concentrations by using satellite-retrieved Aerosol Optical Thickness(AOT).This method considers the distribution and variation of Planetary Boundary Layer(PBL)height and relative humidity(RH)at the regional scale.The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT.By incorporation MODIS AOT,PBL height and RH simulated by RAMS,this method is applied to estimate the surface-level PM 2.5 concentrations in North China region.The result is evaluated by using 16 ground-based observations deployed in the research region,and the result shows a good agreement between estimated PM 2.5 concentrations and observations,and the coefficient of determination R2 is 0.61 between the estimated PM 2.5 concentrations and the observations.In addition,surface-level PM 2.5 concentrations are also estimated by using MODIS AOT,ground-based LIDAR observations and RH measurements.A comparison between the two estimated PM 2.5 concentrations shows that the new method proposed in this paper is better than the traditional method.The coefficient of determination R2 is improved from 0.32 to 0.62.
文摘As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the main HRSS are summarized,and these technologies include sensor design,attitude and orbit determination,geometric calibration,imaging model construction,and block adjustment,etc.,which involve the mapping accuracy of HRSS.Finally,the system design of the ZY-3 Satellite(China’s first civil stereoscopic surveying and mapping satellite,to be launched in 2012)is introduced,which mainly include satellite technical specifications and strategies design based on these key technologies research.
基金supported by the National Natural Science Foundation of China(Grant No.11972130)。
文摘This paper focuses upon the novel optical conical scanning imaging working mode design for small satellites.This kind of satellite employs only one inclined optical camera achieving wide-swath imaging via a rotational motion about the nadir axis either by the camera or by the satellite.Three working modes are designed,i.e.,high-speed rotational mode,low-speed rotational mode,and variable-speed rotational mode.For the high-speed and low-speed working modes,the camera rotates at a constant speed and the corresponding angular velocity is derived under the consideration of guaranteed coverage and minimized overlap.To improve the system performance,an enhanced working mode taking advantages of both the high-speed rotational mode and lowspeed rotational mode is proposed.Working in this variable-speed rotational mode,the camera rotates slowly to get high-quality pictures when it works,while it rotates rapidly to reduce the energy consumption and save the storage during which period the camera is turned off to minimize the overlap.All these working modes are illustrated in detail,and numerical simulation tests are conducted to validate their effectiveness.