In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n...BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.展开更多
BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentat...BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree ...The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for pr...Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.展开更多
Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to ...Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.展开更多
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
In modern medicine,medical image examination has become an important method and tool to deal with clinical diseases.The inherent defects of artificial analysis of medical images make medical images become the most val...In modern medicine,medical image examination has become an important method and tool to deal with clinical diseases.The inherent defects of artificial analysis of medical images make medical images become the most valuable application scenario of artificial intelligence(AI).This paper aims at how to effectively adapt to economic development and cultivate talents who combine artificial intelligence and medicine,which is a difficult problem and challenge facing schools and educators.A new AI+medical imaging talent training model was proposed,and suggestions for improvement were introduced from the course design,assessment system,faculty team,and course textbooks,and the teaching effect was explained through the training process,supporting conditions,and training mechanism,so as to promote the scientific and technological progress of colleges and universities.and development.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to...Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.展开更多
A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly ...A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end m...High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo si...In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.展开更多
Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missi...Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.展开更多
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.
基金This study was approved by the Medical Ethics Committee of Beijing Tsinghua Changgung Hospital(20002-0-02).
文摘BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.
基金Supported by The Clinical Innovation Guidance Program of Hunan Provincial Science and Technology Department,China,No.2021SK51714The Hunan Nature Science Foundation,China,No.2023JJ30531.
文摘BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金This study was supported by the Project of“863”Marine Monitor of Hi-Tech Research and Development Program of China under contract No.2003AA604040.
文摘The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金Under the auspices of Jiangsu Provincial Natural ScienceFoundation(No .BK2002420 )
文摘Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.
文摘Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
文摘In modern medicine,medical image examination has become an important method and tool to deal with clinical diseases.The inherent defects of artificial analysis of medical images make medical images become the most valuable application scenario of artificial intelligence(AI).This paper aims at how to effectively adapt to economic development and cultivate talents who combine artificial intelligence and medicine,which is a difficult problem and challenge facing schools and educators.A new AI+medical imaging talent training model was proposed,and suggestions for improvement were introduced from the course design,assessment system,faculty team,and course textbooks,and the teaching effect was explained through the training process,supporting conditions,and training mechanism,so as to promote the scientific and technological progress of colleges and universities.and development.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金Supported by the China National Science and Technology Major Project(2016ZX05015001-001,2016ZX05033-003-002)
文摘Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.
基金supported by the National Natural Science Foundation of China(41701499)the Sichuan Science and Technology Program(2018GZ0265)the Geomatics Technology and Application Key Laboratory of Qinghai Province(QHDX-2018-07)
文摘A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
文摘High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金The name of the project that funded this article is 13th Five-Year Plan"equipment pre-research project,the number of this project is 30107030803。
文摘In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.
基金supported by the Key Army Pre-research Projects of China(30107030803)
文摘Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.