期刊文献+
共找到63,495篇文章
< 1 2 250 >
每页显示 20 50 100
FLOW STRESS MODELING FOR AERONAUTICAL ALUMINUM ALLOY 7050-T7451 IN HIGH-SPEED CUTTING 被引量:15
1
作者 付秀丽 艾兴 +1 位作者 万熠 张松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期139-144,共6页
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ... The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations. 展开更多
关键词 high-speed cutting flow stress models SHPB compression experiment FEM simulation
下载PDF
CUTTING TEMPERATURE MEASUREMENT IN HIGH-SPEED END MILLING 被引量:8
2
作者 全燕鸣 林金萍 王成勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期47-51,共5页
A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperat... A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperature is measured by the tool/workpiece natural thermocouple, while the temperature distribution on the workpiece surface and that of interior are measured by some standard thermocouples prearranged at proper positions. The system can be used to measure cutting temperature in the machining with the rotary cutting tools, such as vertical drill and end milling cutter. It is practically used for the research on high-speed milling with hardened steel. 展开更多
关键词 high-speed milling end milling cutter cutting temperature THERMOCOUPLE
下载PDF
Modeling high-speed cutting of SiC_(p)/Al composites using a semi-phenomenologically based damage model 被引量:3
3
作者 Junfeng XIANG Lijing XIE Feinong GAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期218-229,共12页
In this paper,we attempts to investigate cutting mechanisms in high-speed cutting of Al6061/Si C_(p)/15p composites using a semi-phenomenologically based damage model in the equivalent homogeneous material(EHM)framewo... In this paper,we attempts to investigate cutting mechanisms in high-speed cutting of Al6061/Si C_(p)/15p composites using a semi-phenomenologically based damage model in the equivalent homogeneous material(EHM)framework.By combining macroscale EHM modeling and underlying microscale physical mechanisms,a feasible semi-phenomenological plastic model is proposed for prediction of cutting forces and chip morphology during high-speed turning Al6061/Si C_(p)/15p composites.This model incorporates the modified Weibull weakest-link effect to represent the strain-based damage evolution in large deformations.This proposed semi-phenomenological constitutive model is implemented by compiling material subroutines into cutting finite element(FE)codes.The effects of the critical shear stresses on chip formation that depend on the toolchip frictional coefficient are accounted for in the cutting FE model.The chip formation mechanism affecting material removal behaviors during high-speed turning is further investigated.The capabilities of the proposed constitutive model are evaluated by comparing cutting forces and chip morphologies between experiments and simulations at different cutting speeds associated with strain rates.The EHM-based and microstructure-based models are further compared in both computational efficiency and accuracy.The simulation results show that the developed semiphenomenological constitutive formalism and cutting model are promising and efficient tools for further investigation of dynamic mechanical and cutting behaviors of particle-reinforced composites with different volume fraction and particle size. 展开更多
关键词 Chip morphology Damage evolution high-speed cutting Semi-phenomenological plasticity SiC_(p)/Al composites
原文传递
CUTTING FORCES FOR HIGH-SPEED DRILLING OF COMPOSITES 被引量:1
4
作者 全燕鸣 钟文旺 熊国雄 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期175-179,共5页
The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp... The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries. 展开更多
关键词 high-speed drillings composites carbide drill cutting force orthogonal experiment
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
5
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
6
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 high-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
7
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 high-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
8
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 high-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
9
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 high-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
Hole cleaning evaluation and installation spacing optimization of cuttings bed remover in extended-reach drilling
10
作者 Shuo Peng Wen-Jun Huang De-Li Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2005-2022,共18页
In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,an... In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers. 展开更多
关键词 Extended-reach drlling Drilling hydraulics cuttings transport Hole cleaning cuttings bed remover
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
11
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 high-speed load model Dynamic analysis high-speed railways Train signature Railway bridges Deck acceleration
下载PDF
Yield and Nutritive Values of Semi- and Non-Fall Dormant Alfalfa Cultivars under Late-Cutting Schedule in California’s Central Valley
12
作者 Sultan Begna Dan Putnam +2 位作者 Dong Wang Khaled Bali Longxi Yu 《American Journal of Plant Sciences》 CAS 2024年第10期858-876,共19页
California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield ... California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield and nutritive value under late-cutting schedule strategy may help identify cultivars that growers can use to maximize yield while maintaining area for sustainable alfalfa production, but there is little information on this strategy. A field study was conducted to determine cumulative dry matter (DM) and nutritive values of 20 semi- and non-fall dormant (FD) ratings (FD 7 and FD 8 - 10, respectively) cultivars under 35-day cut in California’s Central Valley in 2020-2022. Seasonal cumulative DM yields ranged from 6.8 in 2020 to 37.0 Mg·ha−1 in 2021. Four FD 8 - 9 cultivars were the highest yielding with 3-yrs avg. DM greater than the lowest yielding lines by 46%. FD 7 cultivar “715RR” produced the highest crude protein (CP: 240 g·Kg−1) while FD 8 cultivar “HVX840RR” resulted in the highest neutral detergent fiber digestibility (NDFD: 484 g·Kg−1, 7% greater than the top yielding cultivars) but with DM yield intermediate. Yields and NDFD correlated positively but weakly indicating some semi- and non-FD cultivars performing similarly. These results suggest that selecting high yielding cultivars under 35-day cutting schedule strategy can be used as a tool to help growers to maximize yield while achieving good quality forages for sustainable alfalfa production in California’s Central Valley. 展开更多
关键词 ALFALFA Maximizing Yield Nutritive Value CULTIVAR cutting Schedule Production Area California
下载PDF
Numerical investigation of friction-heating-pressurization and its control parameters in the shear band of high-speed landslides
13
作者 ZHAO Nenghao CUI Shenghua LU Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3380-3395,共16页
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat... High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding. 展开更多
关键词 high-speed landslide Shear band Friction-heating-pressurization Numerical investigation
下载PDF
Numerical investigation on the aerodynamic drag reduction based on bottom deflectors and streamlined bogies of a high-speed train
14
作者 JIANG Chen LONG jn-lan +2 位作者 LI Yan-ong GAO Guang-jun FRANKLIN Eze 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3312-3328,共17页
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th... The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains. 展开更多
关键词 high-speed train numerical simulation drag reduction DEFLECTOR streamlined design
下载PDF
Dynamic analysis of axle box bearings on the high-speed train caused by wheel-rail excitation
15
作者 Qiaoying MA Shaopu YANG +2 位作者 Yongqiang LIU Baosen WANG Zechao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期441-460,共20页
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact... To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings. 展开更多
关键词 high-speed train track irregularity wheel flat dynamic simulation
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
16
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 high-speed train GEARBOX Bench test Vibration behavior Modal identification
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
17
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 high-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
18
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Unraveling engineering disturbance effects on deformation in red-bed mudstone railway cuttings:incorporating crack-facilitated moisture diffusion
19
作者 HUANG Kang DAI Zhangjun +3 位作者 YAN Chengzeng YAO Junkai CHI Zecheng CHEN Shanxiong 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1663-1682,共20页
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli... Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways. 展开更多
关键词 Red-bed mudstone Railway cutting FDEM Moisture diffusion DEFORMATION CRACK
下载PDF
Precipitates Generation Mechanism and Surface Quality Improvement for Aluminum Alloy 6061 in Diamond Cutting
20
作者 王海龙 DENG Wenping 王素娟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期150-159,共10页
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p... To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061. 展开更多
关键词 Al6061 PRECIPITATES aging treatment diamond cutting surface roughness
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部