Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are ...Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.展开更多
This study aims to reduce the work-affected layer of the machined surface by carrying out the grinding at the speed over static pr o pagation speed of plastic wave of ductile materials and also aims to clarify suc h s...This study aims to reduce the work-affected layer of the machined surface by carrying out the grinding at the speed over static pr o pagation speed of plastic wave of ductile materials and also aims to clarify suc h super high-speed machining mechanism.This paper reports on the result obtain ed through the molecular dynamics simulations and experiments on the super-spee d grinding below and beyond static propagation speed of aluminum.From the simul ation results,it is verified that the plastic deformation is reduced when the m a chining speed exceeds the material static propagation speed of plastic wave and its mechanism is completely different from that of the ordinary grinding process .Experimental results also show the improvement of the surface integrity when t he machining speed exceeds the material static propagation speed of plastic wave .展开更多
A novel hair sample pre-treatment method based on high-speed grinding and solid-phase microextraction(SPME)had been applied for the determination of amphetamines,ketamine and their metabolites in hair samples by liqui...A novel hair sample pre-treatment method based on high-speed grinding and solid-phase microextraction(SPME)had been applied for the determination of amphetamines,ketamine and their metabolites in hair samples by liquid chromatography mass spectrometry(LC-MS).A 20mg sample of hair was ground with 2 mL of saturated sodium carbonate solution using a high-efficiency hair grinder with 70 Hz osillation for 2min at 4℃.After centrifuging,1.5mL of the supernatant was transferred and treated with SPME by direct immersion(DI-SPME).The target analytes extracted by fibre were desorbed and analysed using LC-MS.Under the optimum conditions,a recovery of 90.2%-95.8%was obtained for all analytes.The analytical method was linear for all analytes in the range from 0.2 to 10 ng/mg with the correlation coefficient ranging from 0.9985 to 0.9993.The detection limits for all analytes were estimated to be 0.067 ng/mg.The accuracy(mean relative error)was within±6.9%and the precision(relative standard error)was less than 6.8%.The combination of high-speed grinding of hair and SPME had the advantages of being easy to perform,environment-friendly and high in detection sensitivity.The proposed method offered an altermative ana lytical approach for the sensitive detection of drugs in hair samples for forensic purposes.展开更多
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo...Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.展开更多
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H...High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.展开更多
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heig...Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.展开更多
[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Method...[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Methods] Whole soybean milk was prepared by grinding with a grinding wheel at a low concentration (low-concentration grinding) and a stainless steel mill at a high concentration (high-concentration grinding). The sensory, physical and chemical characteristics and anti-nutritional factors of whole soybean milk produced by different grinding methods were studied. [Results] Compared with low-concentration grinding, the protein content in soybean milk prepared by high-concentration grinding increased by 24%, and the dietary fiber content increased by 74.7%. Before and after high-pressure homogenization, the particle size D(4, 3) of soybean milk prepared by low-concentration grinding was 212.1 and 93.59 μm, respectively, and the particle size D(4, 3) of soybean milk prepared by high-concentration grinding was 134.0 and 64.64 μm, respectively. The trypsin inhibitor activity and phytic acid content of soybean milk prepared by high-concentration grinding were significantly lower than those of soybean milk prepared by low-concentration grinding. [Conclusions] This study improves the diet structure of the broad masses of people, strengthens people s physique, and provides a new idea for the implementation and development of China s "Soybean Action Programme".展开更多
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl...In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.展开更多
Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),...Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%.展开更多
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat...High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.展开更多
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th...The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.展开更多
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact...To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings.展开更多
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio...The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.展开更多
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID...The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased.展开更多
基金Supported by the National Natural Science Foundation of China(51235004)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13_0154)
文摘Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.
文摘This study aims to reduce the work-affected layer of the machined surface by carrying out the grinding at the speed over static pr o pagation speed of plastic wave of ductile materials and also aims to clarify suc h super high-speed machining mechanism.This paper reports on the result obtain ed through the molecular dynamics simulations and experiments on the super-spee d grinding below and beyond static propagation speed of aluminum.From the simul ation results,it is verified that the plastic deformation is reduced when the m a chining speed exceeds the material static propagation speed of plastic wave and its mechanism is completely different from that of the ordinary grinding process .Experimental results also show the improvement of the surface integrity when t he machining speed exceeds the material static propagation speed of plastic wave .
基金Financial supports from Major Project of Sichuan Provincial Public Security Department[grant number 201901]Support Program of Outstanding Talents in the New Century in Universities of Fujian,China,Young Scientific Natural Science Foundation of Universities in Fujian,China and Funding for High-Level Talent of Luzhou Municipal People's Government-Southwest Medical University are gratefully acknowledged.
文摘A novel hair sample pre-treatment method based on high-speed grinding and solid-phase microextraction(SPME)had been applied for the determination of amphetamines,ketamine and their metabolites in hair samples by liquid chromatography mass spectrometry(LC-MS).A 20mg sample of hair was ground with 2 mL of saturated sodium carbonate solution using a high-efficiency hair grinder with 70 Hz osillation for 2min at 4℃.After centrifuging,1.5mL of the supernatant was transferred and treated with SPME by direct immersion(DI-SPME).The target analytes extracted by fibre were desorbed and analysed using LC-MS.Under the optimum conditions,a recovery of 90.2%-95.8%was obtained for all analytes.The analytical method was linear for all analytes in the range from 0.2 to 10 ng/mg with the correlation coefficient ranging from 0.9985 to 0.9993.The detection limits for all analytes were estimated to be 0.067 ng/mg.The accuracy(mean relative error)was within±6.9%and the precision(relative standard error)was less than 6.8%.The combination of high-speed grinding of hair and SPME had the advantages of being easy to perform,environment-friendly and high in detection sensitivity.The proposed method offered an altermative ana lytical approach for the sensitive detection of drugs in hair samples for forensic purposes.
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Natural Science Foundation of China[U2268217].
文摘Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.
基金This work was financially supported by the Portuguese Foundation for Science and Technology(FCT)through the PhD scholarship PD/BD/143007/2018The authors would like also to acknowledge the financial support of the projects IN2TRACK2-Research into enhanced track and switch and crossing system 2 and IN2TRACK3-Research into optimised and future railway infrastructure funded by European funds through the H2020(SHIFT2RAIL Innovation Programme)and of the Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC).
文摘High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
基金Supported by National Natural Science Foundation of China(Nos.52205476,92160301)Youth Talent Support Project of Jiangsu Provincial Association of Science and Technology of China(Grant No.TJ-2023-070)+2 种基金Science Center for Gas Turbine Project(Grant No.P2023-B-IV-003-001)Fund of Prospective Layout of Scientific Research for the Nanjing University of Aeronautics and Astronautics of China(Grant No.1005-ILB23025-1A)Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China(Grant No.1005-ZAA20003-14).
文摘Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(21A048)Graduate Student Research Innovation Project of Shaoyang University(CX2022SY080)Transverse project of Shaoyang University(2023HX37,2023HX43)。
文摘[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Methods] Whole soybean milk was prepared by grinding with a grinding wheel at a low concentration (low-concentration grinding) and a stainless steel mill at a high concentration (high-concentration grinding). The sensory, physical and chemical characteristics and anti-nutritional factors of whole soybean milk produced by different grinding methods were studied. [Results] Compared with low-concentration grinding, the protein content in soybean milk prepared by high-concentration grinding increased by 24%, and the dietary fiber content increased by 74.7%. Before and after high-pressure homogenization, the particle size D(4, 3) of soybean milk prepared by low-concentration grinding was 212.1 and 93.59 μm, respectively, and the particle size D(4, 3) of soybean milk prepared by high-concentration grinding was 134.0 and 64.64 μm, respectively. The trypsin inhibitor activity and phytic acid content of soybean milk prepared by high-concentration grinding were significantly lower than those of soybean milk prepared by low-concentration grinding. [Conclusions] This study improves the diet structure of the broad masses of people, strengthens people s physique, and provides a new idea for the implementation and development of China s "Soybean Action Programme".
基金the financial support for this work by the National Natural Science Foundation of China (No.51235004 and No.51375235)the Fundamental Research Funds for the Central Universities (No.NE2014103)the Science and Technology Supporting Program of Jiangsu Province (No.BE2013109 and No.BY2014003-008)
文摘In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.
基金support from the National Science Fund of China(52325506)the National Science and Technology Major Project(2017-VII-0002-0095)Fundamental Research Funds for the Central Universities(DUT22LAB501)。
文摘Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%.
基金financed by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2023K022)the Natural Science Foundation of Hubei Province(No.2022CFA011).
文摘High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.
基金Project(2020YFA0710901)supported by the National Key Research and Development Program of ChinaProject(2023JJ30643)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(12372204)supported by the National Natural Science Foundation of ChinaProject(2022ZZTS0725)supported by the Self-exploration and Innovation Project for Postgraduates of Central South University,China。
文摘The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.
基金Project supported by the National Natural Science Foundation of China(Nos.12393780,1203201712002221)+3 种基金the Key Scientific Research Projects of China Railway Group(No.N2021J032)the College Education Scientific Research Project in Hebei Province of China(No.JZX2024006)the S&T Program in Hebei of China(No.21567622H)the Research Project of Hebei Province Science and Technology(No.QN2023071)。
文摘To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings.
基金The authors are grateful for the financial support from the National Key Research and Development Program of China(Grant No.2021YFB3400701)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBQY007).
文摘The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.
基金supported by Wuyi University Hong Kong and Macao Joint Research and Development Fund(GrantsNos.2021WGALH15,2019WGALH17,2019WGALH15)the National Natural Science Foundation of China-Guangdong Joint Fund(GrantsNo.2019A1515111052)+2 种基金the National Natural Science Foundation of China(Grant No.52202426)a grant from the Research Grants Council(RGC)of the Hong Kong Special Administrative Region(SAR),China(Grants No.15205723)a grant from the Hong Kong Polytechnic University(Grant No.P0045325).
文摘The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased.