Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on...Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and d...This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.展开更多
Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem...Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used f...Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used for client GPRS communication module. Using Winsock control of visual basic(VB),the client and server communication has been accomplished. By means of a client and server communications software,the remote wireless transmission of vehicle inspection data has been accomplished also. The server management software has been developed by using Microsoft SQL Server 2000 and VB6.0. Functions of software include import,inquiry,export and maintenance of test data.展开更多
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac...In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.展开更多
The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspa...The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.展开更多
The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hi...The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hierarchical model updating method integrated with field measurements.First,a high-speed maglev vehicle/guideway coupled model,taking into account the real effect of guideway material properties and elastic restraint of bearings,was developed by integrating the finite element method,multi-body dynamics,and electromagnetic levitation control.Subsequently,simultaneous in-site measurements of the vehicle/guideway were conducted on a high-speed maglev test line to analyze the system response and structural modal parameters.During the hierarchical updating,an Elman neural network with the optimal Latin hypercube sampling method was used to substitute the FE guideway model,thus improving the computational efficiency.The multi-objective particle swarm optimization algorithm with the gray relational projection method was applied to hierarchically update the parameters of the guideway layer and magnetic force layer based on the measured modal parameters and the electromagnet vibration,respectively.Finally,the updated coupled model was compared with the field measurements,and the results demonstrated the model’s accuracy in simulating the actual dynamic response,validating the effectiveness of the updating method.展开更多
While introducing foreign advanced technology and cooperating with Chinese famous research institutes,the high-speed vehicles are designed and take the major task of passenger transport in China.In high-speed vehicle,...While introducing foreign advanced technology and cooperating with Chinese famous research institutes,the high-speed vehicles are designed and take the major task of passenger transport in China.In high-speed vehicle,the characteristic of shock absorber is an important parameter which determines overall behavior of the vehicle.The most existing researches neglect the influence of the series stiffness of the shock absorber on the vehicle dynamic behavior and have one-sided views on the equivalent conicity of wheel tread.In this paper,a high speed passenger vehicle in China is modeled to investigate the effect of the parameters taking series hydraulic shock absorber stiffness into consideration on Ruzicka model.Using the vehicle dynamic model,the effect of main suspension parameters on critical speed is studied.In order to verify the reasonableness of shock absorber parameter settings,vibration isolation characteristics are calculated and the relationship between suspension parameters and the vehicle critical hunting speed is studied.To study the influence of equivalent conicity on vehicle dynamic behavior,a series of wheel treads with different conicities are set and the vehicle critical hunting speeds with different wheel treads are calculated.The discipline between the equivalent conicity of wheel tread and critical speed are obtained in vehicle nonlinear system.The research results show that the critical speed of vehicle much depends on wheelset positioning stiffness and anti-hunting motion damper,and the series stiffness produces notable effect on the vehicle dynamic behavior.The critical speed has a peak value with the equivalent conicity increasing,which is different from the traditional opinion in which the critical speed will decrease with the conicity increasing.The relationship between critical speed and conicity of wheel tread is effected by the suspension parameters of the vehicle.The study results obtained offer a method and useful data to designing the parameters of the high speed vehicle and simulation study.展开更多
This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum o...This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.展开更多
The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced ...With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.展开更多
High-speed Maglev is a cutting-edge technology brought back into the focus of research by plans of the Chinese government for the development of a new 600 km/h Maglev train.A Chinese‐German cooperation with industria...High-speed Maglev is a cutting-edge technology brought back into the focus of research by plans of the Chinese government for the development of a new 600 km/h Maglev train.A Chinese‐German cooperation with industrial and academic partners has been established to pursue this ambitious goal and bring together experts from multiple disciplines.This contribution presents the joint work and achievements of CRRC Qingdao Sifang,thyssenkrupp Transrapid,CDFEB,and the ITM of the University of Stuttgart,regarding research and development in the field of high‐speed Maglev systems.Furthermore,an overview is given of the historical development of the Transrapid in Germany,the associated development of dynamical simulation models,and recent developments regarding high-speed Maglev trains in China.展开更多
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p...Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.展开更多
Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stabil...Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety.Since wheel/rail contact forces of high-speed train are very difficult to measure directly,a new estimation process for wheel/rail contact forces was introduced in this work.Based on the state space equation,dynamic programming methods and the Bellman principle of optimality,the main theoretical derivation of the inversion mathematical model was given.The new method overcomes the weakness of large fluctuations which exist in current inverse techniques.High-speed vehicle was chosen as the research object,accelerations of axle box as input conditions,10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established,respectively.Under 250 km/h,the vertical and lateral wheel/rail forces were identified.From the time domain and frequency domain,the comparison of the results between inverse and SIMPACK models were given.The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.展开更多
Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conve...Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.展开更多
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
基金supported by the Federal Railroad Administration (FRA)the National Academy of Science (NAS) IDEA program
文摘Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
文摘This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.
基金part of the Program of "Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System" funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
文摘Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used for client GPRS communication module. Using Winsock control of visual basic(VB),the client and server communication has been accomplished. By means of a client and server communications software,the remote wireless transmission of vehicle inspection data has been accomplished also. The server management software has been developed by using Microsoft SQL Server 2000 and VB6.0. Functions of software include import,inquiry,export and maintenance of test data.
基金the support of the National Natural Science Foundation of China (No. 51005189)the National Key Technology R&D Program of China (2009BAG12A01)
文摘In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.
基金supported by the National Natural Science Foundation of China(Nos.92371201,52192633)the Natural Science Foundation of Shaanxi Province(No.2022JC-03)Chinese Aeronautical Foundation(No.ASFC-20220019070002)。
文摘The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.
基金The study described in this paper was supported by the National Key Research and Development Program of China(No.2016YFB1200602-30).
文摘The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hierarchical model updating method integrated with field measurements.First,a high-speed maglev vehicle/guideway coupled model,taking into account the real effect of guideway material properties and elastic restraint of bearings,was developed by integrating the finite element method,multi-body dynamics,and electromagnetic levitation control.Subsequently,simultaneous in-site measurements of the vehicle/guideway were conducted on a high-speed maglev test line to analyze the system response and structural modal parameters.During the hierarchical updating,an Elman neural network with the optimal Latin hypercube sampling method was used to substitute the FE guideway model,thus improving the computational efficiency.The multi-objective particle swarm optimization algorithm with the gray relational projection method was applied to hierarchically update the parameters of the guideway layer and magnetic force layer based on the measured modal parameters and the electromagnet vibration,respectively.Finally,the updated coupled model was compared with the field measurements,and the results demonstrated the model’s accuracy in simulating the actual dynamic response,validating the effectiveness of the updating method.
基金supported by Doctoral Discipline Foundation of Ministry of Education of China (Grant No. 20090184110023)Unite Project of Basic Research Program on High-speed Railway of Railway Ministry of China (Grant No. U1134202)Independent Research Project of Traction Power State Key Laboratory of Southwest Jiaotong University,China (Grant No. 2009TPL-T06)
文摘While introducing foreign advanced technology and cooperating with Chinese famous research institutes,the high-speed vehicles are designed and take the major task of passenger transport in China.In high-speed vehicle,the characteristic of shock absorber is an important parameter which determines overall behavior of the vehicle.The most existing researches neglect the influence of the series stiffness of the shock absorber on the vehicle dynamic behavior and have one-sided views on the equivalent conicity of wheel tread.In this paper,a high speed passenger vehicle in China is modeled to investigate the effect of the parameters taking series hydraulic shock absorber stiffness into consideration on Ruzicka model.Using the vehicle dynamic model,the effect of main suspension parameters on critical speed is studied.In order to verify the reasonableness of shock absorber parameter settings,vibration isolation characteristics are calculated and the relationship between suspension parameters and the vehicle critical hunting speed is studied.To study the influence of equivalent conicity on vehicle dynamic behavior,a series of wheel treads with different conicities are set and the vehicle critical hunting speeds with different wheel treads are calculated.The discipline between the equivalent conicity of wheel tread and critical speed are obtained in vehicle nonlinear system.The research results show that the critical speed of vehicle much depends on wheelset positioning stiffness and anti-hunting motion damper,and the series stiffness produces notable effect on the vehicle dynamic behavior.The critical speed has a peak value with the equivalent conicity increasing,which is different from the traditional opinion in which the critical speed will decrease with the conicity increasing.The relationship between critical speed and conicity of wheel tread is effected by the suspension parameters of the vehicle.The study results obtained offer a method and useful data to designing the parameters of the high speed vehicle and simulation study.
文摘This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.
基金supported by the National Key Research and Development Program of China(grant number:2017YFC0806503)。
文摘With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.
基金CRRC Sifang received partial funding for this project from the National Natural Science Foundation of China under Grant Number 52232013.This support is highly appreciated.
文摘High-speed Maglev is a cutting-edge technology brought back into the focus of research by plans of the Chinese government for the development of a new 600 km/h Maglev train.A Chinese‐German cooperation with industrial and academic partners has been established to pursue this ambitious goal and bring together experts from multiple disciplines.This contribution presents the joint work and achievements of CRRC Qingdao Sifang,thyssenkrupp Transrapid,CDFEB,and the ITM of the University of Stuttgart,regarding research and development in the field of high‐speed Maglev systems.Furthermore,an overview is given of the historical development of the Transrapid in Germany,the associated development of dynamical simulation models,and recent developments regarding high-speed Maglev trains in China.
基金Project(U1234208)supported by the Major Program of the National Natural Science Foundation of ChinaProject(2013J008-A)supported by the Research and Development Plan of Major Tasks in Science and Technology China Railways Co.Ltd.,China
文摘Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.
基金Project(2009BAG12A04-A11)supported by the National Key Technology R&D Program in the"11-th Five-year Plan"of ChinaProjects(51275432,51005190)supported by the National Natural Science Foundation of ChinaProject(SWJTU09ZT23)supported by University Doctor Academics Particularly Science Research Fund,China
文摘Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety.Since wheel/rail contact forces of high-speed train are very difficult to measure directly,a new estimation process for wheel/rail contact forces was introduced in this work.Based on the state space equation,dynamic programming methods and the Bellman principle of optimality,the main theoretical derivation of the inversion mathematical model was given.The new method overcomes the weakness of large fluctuations which exist in current inverse techniques.High-speed vehicle was chosen as the research object,accelerations of axle box as input conditions,10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established,respectively.Under 250 km/h,the vertical and lateral wheel/rail forces were identified.From the time domain and frequency domain,the comparison of the results between inverse and SIMPACK models were given.The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.
基金supported by the National Natural Science Foundation of China(51705470).
文摘Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.