According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed trai...In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed train operating at lower temperatures with Reynolds number Re=1.85×10^(6).The accuracy of the numerical method has been validated by wind tunnel tests.The aerodynamic drag of the train,pressure distribution on the surface of the train,the flow around the vehicle,and the wake flow are compared for four temperature values:+15℃,0℃,−15℃,and−30℃.It was found that lower operating t emperatures significantly increased the aerodynamic drag force of the train.The drag overall at low temperatures increased by 5.3%(0℃),11.0%(−15℃),and 17.4%(−30℃),respectively,relative to the drag at+15℃.In addition,the low temperature e nhances the positive and negative pressures around and on the surface of the car body,raising the peak positive and negative pressure values in areas susceptible to impingement flow and to rapid changes in flow velocity.The range of train-induced winds around the car body is significantly reduced,the distribution area of vorticity moves backwards,and the airflow velocity in the bogie cavity is significantly increased.At the same time,the temperature causes a significant velocity reduction in the wake flow.It can be seen that the temperature reduction can seriously disturb the normal operation of the train while increasing the aerodynamic drag and energy consumption,and significantly interfering with the airflow characteristics around the car body.展开更多
为了提高锆合金包壳管的冷轧质量,通过统计过程控制技术和工序能力分析研究了锆合金包壳管冷轧后的壁厚偏差问题,并基于试验设计(design of experiment, DOE)技术对皮格尔冷轧工艺进行了优化。包壳管冷轧质量分析和工艺优化试验的结果表...为了提高锆合金包壳管的冷轧质量,通过统计过程控制技术和工序能力分析研究了锆合金包壳管冷轧后的壁厚偏差问题,并基于试验设计(design of experiment, DOE)技术对皮格尔冷轧工艺进行了优化。包壳管冷轧质量分析和工艺优化试验的结果表明,轧制前管材的壁厚偏差和送进量对轧制后的管材壁厚偏差有显著影响;当轧制前管材壁厚偏差<0.3 mm、壁厚变形量为65%、送进量为1.0 mm/次时,轧制后的管材壁厚偏差最小;通过轧制工艺优化后,反映壁厚偏差离散性的极差平均值由0.036减小到0.018,极差波动也明显减小,轧制质量显著提高;当轧制管材壁厚变形量一定时,对轧制前壁厚偏差较大的管材,采用小送进量轧制,可减小轧制后管材的壁厚偏差,达到提高锆合金包壳管材质量的目的。展开更多
基于设计的轧辊孔型,使用三维有限元分析软件Simufact,对28Ni Cr Mo V8.5钢管典型规格准16 mm×1.5mm皮尔格冷轧过程进行了数值模拟。研究了不同摩擦系数及孔型开口系数对冷轧管横向壁厚分布及精度的影响规律。结果表明:钢管的横向...基于设计的轧辊孔型,使用三维有限元分析软件Simufact,对28Ni Cr Mo V8.5钢管典型规格准16 mm×1.5mm皮尔格冷轧过程进行了数值模拟。研究了不同摩擦系数及孔型开口系数对冷轧管横向壁厚分布及精度的影响规律。结果表明:钢管的横向壁厚分布是不均匀的,在孔型开口及孔顶处出现最小值,在孔型侧壁角45°两侧出现最大值。随着摩擦系数和孔型开口系数增大,不均匀的横向壁厚变得更加严重。当轧辊与轧件的摩擦系数由0.080增大到0.095时,冷轧管的横向壁厚精度由5.51%变到6.98%;当孔型开口系数由0.051增大到0.061时,横向壁厚精度由5.51%变到8.11%。展开更多
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
基金supported by the National Natural Science Foundation of China(Nos.52172363 and 52202429)the National Key Research and Development Program of China(No.2020YFF0304103-03)the Independent Exploration of Graduate Students of Central South University(No.2019zzts268),China.
文摘In this study,an improved delayed detached eddy simulation(IDDES)method based on the shear-stress transport(SST)k-ωturbulence model has been used to investigate the underbody flow characteristics of a high-speed train operating at lower temperatures with Reynolds number Re=1.85×10^(6).The accuracy of the numerical method has been validated by wind tunnel tests.The aerodynamic drag of the train,pressure distribution on the surface of the train,the flow around the vehicle,and the wake flow are compared for four temperature values:+15℃,0℃,−15℃,and−30℃.It was found that lower operating t emperatures significantly increased the aerodynamic drag force of the train.The drag overall at low temperatures increased by 5.3%(0℃),11.0%(−15℃),and 17.4%(−30℃),respectively,relative to the drag at+15℃.In addition,the low temperature e nhances the positive and negative pressures around and on the surface of the car body,raising the peak positive and negative pressure values in areas susceptible to impingement flow and to rapid changes in flow velocity.The range of train-induced winds around the car body is significantly reduced,the distribution area of vorticity moves backwards,and the airflow velocity in the bogie cavity is significantly increased.At the same time,the temperature causes a significant velocity reduction in the wake flow.It can be seen that the temperature reduction can seriously disturb the normal operation of the train while increasing the aerodynamic drag and energy consumption,and significantly interfering with the airflow characteristics around the car body.
文摘基于设计的轧辊孔型,使用三维有限元分析软件Simufact,对28Ni Cr Mo V8.5钢管典型规格准16 mm×1.5mm皮尔格冷轧过程进行了数值模拟。研究了不同摩擦系数及孔型开口系数对冷轧管横向壁厚分布及精度的影响规律。结果表明:钢管的横向壁厚分布是不均匀的,在孔型开口及孔顶处出现最小值,在孔型侧壁角45°两侧出现最大值。随着摩擦系数和孔型开口系数增大,不均匀的横向壁厚变得更加严重。当轧辊与轧件的摩擦系数由0.080增大到0.095时,冷轧管的横向壁厚精度由5.51%变到6.98%;当孔型开口系数由0.051增大到0.061时,横向壁厚精度由5.51%变到8.11%。