This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of H...With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of HSR construction is the signaling system,where wireless communications play a key role in the transmission of train control data.Channel estimation has a significant impact on the quality of the wireless communication,however,whose performance is degraded due to the fast mobility of HSR.This paper focuses on the channel estimation technology in HSR.We first summarize the key challenges for HSR channel estimation,especially the Inter-Carrier Interference(ICI)faced by Orthogonal Frequency Division Multiplexing(OFDM)systems.Then we provide a comprehensive review of existing pilot-aided channel estimation schemes from three points:channel model,estimation algorithm,joint channel estimation and ICI mitigation schemes.Lastly,we present the challenges of channel estimation for the Orthogonal Time Frequency Space(OTFS)system and Reconfigurable Intelligent Surface(RIS),which are promising techniques for HSR systems in the future sixth Generation(6G)wireless communication.展开更多
The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper...The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.展开更多
A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic ...A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.展开更多
The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless commu...Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.展开更多
In order to obtain accurate characteristics of wireless channels in the viaduct area of China, a channel meas- urement was taken in a railway viaduct scenario of the Zhengzhou-Xi'an passenger dedicated line with a ba...In order to obtain accurate characteristics of wireless channels in the viaduct area of China, a channel meas- urement was taken in a railway viaduct scenario of the Zhengzhou-Xi'an passenger dedicated line with a bandwidth of 50 MHz at 2.35 GHz. The single-slope log-distance model is used to analyze the path-loss (PL), and the distribution of shadow fading (SF) is obtained by statistical methods, which shows that the normal distribution fits the samples well. Ricean K-factor is analyzed by the method of moments, and the variation of K-factor is given along the measured route. Small scale such as delay spread and Doppler behavior are parameterized. Based on empirical channel measurement, this paper provides parameters for the evaluation and simulation work on viaduct scenarios of high-speed railway.展开更多
This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements co...This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.展开更多
A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth ...A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth is200 MHz,which solves the large bandwidth,high-speed signal acquisition and processing problems.At present,the data acquisition system is successfully used in broadband receiver test systems.展开更多
GoTaTM from ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
Go Tafrom ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect ...In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.展开更多
Data-driven methods are widely considered for fault diagnosis in complex systems.However,in practice,the between-class imbalance due to limited faulty samples may deteriorate their classification performance.To addres...Data-driven methods are widely considered for fault diagnosis in complex systems.However,in practice,the between-class imbalance due to limited faulty samples may deteriorate their classification performance.To address this issue,synthetic minority methods for enhancing data have been proved to be effective in many applications.Generative adversarial networks(GANs),capable of automatic features extraction,can also be adopted for augmenting the faulty samples.However,the monitoring data of a complex system may include not only continuous signals but also discrete/categorical signals.Since the current GAN methods still have some challenges in handling such heterogeneous monitoring data,a Mixed Dual Discriminator GAN(noted as M-D2GAN)is proposed in this work.In order to render the expanded fault samples more aligned with the real situation and improve the accuracy and robustness of the fault diagnosis model,different types of variables are generated in different ways,including floating-point,integer,categorical,and hierarchical.For effectively considering the class imbalance problem,proper modifications are made to the GAN model,where a normal class discriminator is added.A practical case study concerning the braking system of a high-speed train is carried out to verify the effectiveness of the proposed framework.Compared to the classic GAN,the proposed framework achieves better results with respect to F-measure and G-mean metrics.展开更多
The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signa...The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signal acquisition in the process, the characteristics of the measured signal are analyzed. The system is investigated in chip selection, signal transmission, signal processing, signal storage, post-production PCB design, etc. The appropriate measures and solutions which affect the integrity and accuracy of the signal in each process are proposed. The rules for the layout of the device and wiring are made. The result show that the measurement values are accurate without loss of data.展开更多
Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big...Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by t...A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input,and it calculates and outputs the bunch-by-bunch charge and position.In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes,it offers many additional features such as injection analysis,bunch response function reconstruction,and turn-by-turn beam analysis.The software package has an easy-to-understand graphical user interface and convenient interactive operation,which has been verified on the Windows 10 system.展开更多
The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is prop...The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is proposed based on Ricean channel model. First, a maximum likelihood estimation (MLE) algorithm for DFO is designed, show- ing that the Doppler estimation can be obtained by estimating moving velocity of the train and the path loss with the exploitation of pilots that are placed inside the frame. Then a joint detection algorithm for the receiver is proposed to exploit multi-antenna diversity gains. Last, the theoretical Crammer Rao bound (CRB) for joint channel estimation and DFO estimation is derived. The steady performance of the system is confirmed by numerical simulations. In particular, when the Ricean fading channel parameter equals 5 and the velocities of train are 100 m/s and 150 m/s, the estimation variances of DFO are very close to the theoretical results obtained by using CRB. Meanwhile, the corresponding sig- nal to noise ratio loss is less than 1.5 dB when the bit error rate is 10-5 for 16QAM signals.展开更多
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
文摘With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of HSR construction is the signaling system,where wireless communications play a key role in the transmission of train control data.Channel estimation has a significant impact on the quality of the wireless communication,however,whose performance is degraded due to the fast mobility of HSR.This paper focuses on the channel estimation technology in HSR.We first summarize the key challenges for HSR channel estimation,especially the Inter-Carrier Interference(ICI)faced by Orthogonal Frequency Division Multiplexing(OFDM)systems.Then we provide a comprehensive review of existing pilot-aided channel estimation schemes from three points:channel model,estimation algorithm,joint channel estimation and ICI mitigation schemes.Lastly,we present the challenges of channel estimation for the Orthogonal Time Frequency Space(OTFS)system and Reconfigurable Intelligent Surface(RIS),which are promising techniques for HSR systems in the future sixth Generation(6G)wireless communication.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 62071044 and Grant 62088101in part by the Shandong Province Natural Science Foundation under Grant ZR2022YQ62in part by the Beijing Nova Program.
文摘The current High-Speed Railway(HSR)communications increasingly fail to satisfy the massive access services of numerous user equipment brought by the increasing number of people traveling by HSRs.To this end,this paper investigates millimeter-Wave(mmWave)extra-large scale(XL)-MIMO-based massive Internet-of-Things(loT)access in near-field HSR communications,and proposes a block simultaneous orthogonal matching pursuit(B-SOMP)-based Active User Detection(AUD)and Channel Estimation(CE)scheme by exploiting the spatial block sparsity of the XLMIMO-based massive access channels.Specifically,we first model the uplink mmWave XL-MIMO channels,which exhibit the near-field propagation characteristics of electromagnetic signals and the spatial non-stationarity of mmWave XL-MIMO arrays.By exploiting the spatial block sparsity and common frequency-domain sparsity pattern of massive access channels,the joint AUD and CE problem can be then formulated as a Multiple Measurement Vectors Compressive Sensing(MIMV-CS)problem.Based on the designed sensing matrix,a B-SOMP algorithm is proposed to achieve joint AUD and CE.Finally,simulation results show that the proposed solution can obtain a better AUD and CE performance than the conventional CS-based scheme for massive IoT access in near-field HSR communications.
文摘A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金supported in part by the National Natural Science Foundations(Nos.61032002 and 61102050)the National Science and Technology Major Project(No.2011ZX03001-007-01)+1 种基金the Beijing Natural Science Foundation(No.4122061)the Fundamental Research Funds for the Central Universities(No.2012YJS005)
文摘Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.
基金supported by the National Science & Technology Pillar Program(No.2012BAF14B01)the National Natural Science Foundation of China(No.61171105)China Mobile Research Institute
文摘In order to obtain accurate characteristics of wireless channels in the viaduct area of China, a channel meas- urement was taken in a railway viaduct scenario of the Zhengzhou-Xi'an passenger dedicated line with a bandwidth of 50 MHz at 2.35 GHz. The single-slope log-distance model is used to analyze the path-loss (PL), and the distribution of shadow fading (SF) is obtained by statistical methods, which shows that the normal distribution fits the samples well. Ricean K-factor is analyzed by the method of moments, and the variation of K-factor is given along the measured route. Small scale such as delay spread and Doppler behavior are parameterized. Based on empirical channel measurement, this paper provides parameters for the evaluation and simulation work on viaduct scenarios of high-speed railway.
基金supported by the Beijing Municipal Natural Science Foundation under Grant 4174102the National Natural Science Foundation of China under Grant 61701017+1 种基金the Open Research Fund through the National Mobile Communications Research Laboratory, Southeast University, under Grant 2018D11the Fundamental Research Funds for the Central Universities under Grant 2018JBM003
文摘This paper investigates the cross-correlation characteristics of large-scale parameters(LSPs) and small-scale fading(SSF) for high-speed railway(HSR) multilink propagation scenarios, based on realistic measurements conducted on Beijing to Tianjin HSR line in China. A long-term evolution-based channel sounding system is utilized in the measurements to obtain the channel data. By applying a proposed time-delay based dynamic partition method, multi-link channel impulse responses are extracted from the raw channel data. Then, the statistical results of LSPs, including shadow fading, K-factor, and root-mean-square delay spread are derived and the cross-correlation coefficients of these LPSs are calculated. Moreover, the SSF spatial correlation and cross-correlation of SSF are analyzed. These results can be used to exploit multi-link channel model and to optimize the next-generation HSR communication system.
文摘A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth is200 MHz,which solves the large bandwidth,high-speed signal acquisition and processing problems.At present,the data acquisition system is successfully used in broadband receiver test systems.
文摘GoTaTM from ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
文摘Go Tafrom ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
文摘In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.
文摘Data-driven methods are widely considered for fault diagnosis in complex systems.However,in practice,the between-class imbalance due to limited faulty samples may deteriorate their classification performance.To address this issue,synthetic minority methods for enhancing data have been proved to be effective in many applications.Generative adversarial networks(GANs),capable of automatic features extraction,can also be adopted for augmenting the faulty samples.However,the monitoring data of a complex system may include not only continuous signals but also discrete/categorical signals.Since the current GAN methods still have some challenges in handling such heterogeneous monitoring data,a Mixed Dual Discriminator GAN(noted as M-D2GAN)is proposed in this work.In order to render the expanded fault samples more aligned with the real situation and improve the accuracy and robustness of the fault diagnosis model,different types of variables are generated in different ways,including floating-point,integer,categorical,and hierarchical.For effectively considering the class imbalance problem,proper modifications are made to the GAN model,where a normal class discriminator is added.A practical case study concerning the braking system of a high-speed train is carried out to verify the effectiveness of the proposed framework.Compared to the classic GAN,the proposed framework achieves better results with respect to F-measure and G-mean metrics.
文摘The device is used for the test on the fuze detonating time according to the initial velocity of the projectile and the altitude and speed of enemy aircraft flight. For the special requirements of the high-speed signal acquisition in the process, the characteristics of the measured signal are analyzed. The system is investigated in chip selection, signal transmission, signal processing, signal storage, post-production PCB design, etc. The appropriate measures and solutions which affect the integrity and accuracy of the signal in each process are proposed. The rules for the layout of the device and wiring are made. The result show that the measurement values are accurate without loss of data.
基金supported in part by National Natural Science Foundation of China (61322110, 6141101115)Doctoral Fund of Ministry of Education (201300051100013)
文摘Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
基金supported by the Ten Thousand Talent Program and National Natural Science Foundation of China(No.11575282)the Ten Thousand Talent Program and Chinese Academy of Sciences Key Technology Talent Program。
文摘A software package to be used in high-speed oscilloscope-basedthree-dimensionalbunch-by-bunch charge and position measurement is presented.The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input,and it calculates and outputs the bunch-by-bunch charge and position.In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes,it offers many additional features such as injection analysis,bunch response function reconstruction,and turn-by-turn beam analysis.The software package has an easy-to-understand graphical user interface and convenient interactive operation,which has been verified on the Windows 10 system.
基金supported by the China Major State Basic Research Development Program(973 Program,No.2012CB316100)National Natural Science Foundation of China(No.61171064)+2 种基金the China National Science and Technology Major Project(No.2010ZX03003-003)NSFC(No.61021001)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2011D13)
文摘The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is proposed based on Ricean channel model. First, a maximum likelihood estimation (MLE) algorithm for DFO is designed, show- ing that the Doppler estimation can be obtained by estimating moving velocity of the train and the path loss with the exploitation of pilots that are placed inside the frame. Then a joint detection algorithm for the receiver is proposed to exploit multi-antenna diversity gains. Last, the theoretical Crammer Rao bound (CRB) for joint channel estimation and DFO estimation is derived. The steady performance of the system is confirmed by numerical simulations. In particular, when the Ricean fading channel parameter equals 5 and the velocities of train are 100 m/s and 150 m/s, the estimation variances of DFO are very close to the theoretical results obtained by using CRB. Meanwhile, the corresponding sig- nal to noise ratio loss is less than 1.5 dB when the bit error rate is 10-5 for 16QAM signals.